Skip to main content
Log in

Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N, 3 vs. 9 days and 9 days, N+ vs. N). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

CHAPS:

3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate

GO:

Gene ontology

COG:

Cluster of orthologous groups of proteins

DTT:

DL-dithiothreitol

F 0 :

Minimum fluorescence

F m :

The maximal fluorescence

F v/F m :

Maximum quantum yield of PSII

IAM:

Iodoacetamide

iTRAQ:

Isobaric tag for relative and absolute quantification

KEGG:

Kyoto encyclopedia of genes and genomes

NPQ:

Non-photochemical quenching

PAM:

Pulse amplitude-modulated fluorometry

PMSF:

Phenylmethanesulfonyl fluoride

PSII:

Photosystem II

PSI:

Photosystem I

rETR:

Relative photosynthetic electron transport rate

SCX:

Strong cation exchange

TAG:

Triacylglycerol

TEAB:

Triethylammonium bicarbonate buffer

TEM:

Transmission electron microscope

References

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B 104:1–8

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 36:4149–4154

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  Google Scholar 

  • Alric J, Johnson X (2017) Alternative electron transport pathways in photosynthesis: a confluence of regulation. Curr Opin Plant Biol 37:78–86

    Article  CAS  Google Scholar 

  • Baldisserotto C, Popovich C, Giovanardi M, Sabia A, Ferroni L, Constenla D, Leonardi P, Pancaldi S (2016) Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production. Algal Res 16:255–265

    Article  Google Scholar 

  • Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids, 3rd edn. The Oily Press, Bridgewater, pp 373–387

    Google Scholar 

  • Demmig-Adams B, Stewart JJ, Burch TA, Adams WW III (2014) Insights from placing photosynthetic light harvesting into context. J Phys Chem Lett 5:2880–2889

    Article  CAS  Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta 1847:468–485

    Article  CAS  Google Scholar 

  • Dietzel L, Bräutigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry–functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    Article  CAS  Google Scholar 

  • Fan JL, Yan CS, Andre C, Shanklin J, Schwender J, Xu CC (2012) Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant Cell Physiol 53:1380–1390

    Article  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    Article  CAS  Google Scholar 

  • Fuente D, Keller J, Conejero JA, Rögner M, Rexroth S, Urchueguía JF (2017) Light distribution and spectral composition within cultures of micro-algae: quantitative modelling of the light field in photobioreactors. Algal Res 23:166–177

    Article  Google Scholar 

  • Garnier M, Bougaran G, Pavlovic M, Berard JB, Carrier G, Charrier A, Grand FL, Lukomska E, Rouxel C, Schreiber N, Cadoret JP, Rogniaux H, Saint-Jean B (2016) Use of a lipid rich strain reveals mechanisms of nitrogen limitation and carbon partitioning in the haptophyte Tisochrysis lutea. Algal Res 20:229–248

    Article  Google Scholar 

  • Hockin NL, Mock T, Mulholland F, Kopriva S, Malin G (2012) The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol 158:299–312

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O (2017) Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. Biotechnol Biofuels 10:197

    Article  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. Handbook of phycological methods. physiological and biochemical methods. Cambridge University Press, Cambridge pp, pp 59–70

    Google Scholar 

  • Jia J, Han DX, Gerken HG, Li YT, Sommerfeld M, Hu Q, Xu J (2015) Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Res 7:66–77

    Article  Google Scholar 

  • Johnson X, Alrica J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  CAS  Google Scholar 

  • Jose S, Suraishkumar GK (2016) High carbon (CO2) supply leads to elevated intracellular acetyl CoA levels and increased lipid accumulation in Chlorella vulgaris. Algal Res 19:307–315

    Article  Google Scholar 

  • Kim EY, Choi YH, Lee JI, Kim IH, Nam TJ (2015) Antioxidant activity of oxygen evolving enhancer protein 1 purified from Capsosiphon fulvescens. J Food Sci 80:1412–1417

    Article  Google Scholar 

  • Kuzminov FI, Gorbunov MY (2016) Energy dissipation pathways in photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions. Photosynth Res 127:219–235

    Article  CAS  Google Scholar 

  • Lenka SK, Carbonaro N, Park R, Miller SM, Thorpe I, Li YT (2016) Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis. Biotechnol Adv 34:1046–1063

    Article  CAS  Google Scholar 

  • Li YT, Han DX, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  CAS  Google Scholar 

  • Li T, Xu J, Gao BY, Xiang WZ, Li AF, Zhang CW (2016) Morphology, growth, biochemical composition and photosynthetic performance of Chlorella vulgaris (Trebouxiophyceae) under low and high nitrogen supplies. Algal Res 16:481–491

    Article  Google Scholar 

  • Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S (2012) HILIC-and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. J Proteome Res 11:5959–5971

    Article  CAS  Google Scholar 

  • Minagawa J, Tokutsu R (2015) Dynamic regulation of photosynthesis in Chlamydomonas Reinhardtii. Plant J 82:413–428

    Article  CAS  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106

    Article  CAS  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    Article  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  Google Scholar 

  • Murton J, Nagarajan A, Nguyen AY, Liberton M, Hancock HA, Pakrasi HB, Timlin JA (2017) Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels. Photosynth Res 134:165–174

    Article  CAS  Google Scholar 

  • Nawrocki WJ, Santabarbara S, Mosebach L, Wollman FA, Rappaport F (2016) State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas. Nat Plants 2:1603

    Google Scholar 

  • Negi S, Barry AN, Friedland N, Sudasinghe N, Subramanian S, Pieris S, Holguin FO, Dungan B, Schaub T, Sayre R (2016) Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana. J Appl Phycol 28:803–812

    Article  CAS  Google Scholar 

  • Orefice I, Chandrasekaran R, Smerilli A, Corato F, Caruso T, Casilloc A, Corsaro MM, Piaz FD, Ruban AV, Brunet C (2016) Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res 17:1–13

    Article  Google Scholar 

  • Ow SY, Noirel J, Cardona T, Taton A, Lindblad P, Stensjö K, Wright PC (2008) Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J Proteome Res 8:187–198

    Article  Google Scholar 

  • Pan YY, Wang ST, Chuang LT, Chang YW, Chen CNN (2011) Isolation of thermo-tolerant and high lipid content green microalgae: oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresour Technol 102:10510–10517

    Article  CAS  Google Scholar 

  • Pan XW, Ma J, Su XD, Cao P, Chang WR, Liu ZF, Zhang XZ, Li M (2018) Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 360:1109–1113

    Article  CAS  Google Scholar 

  • Pandhal J, Wright PC, Biggs CA (2007) A quantitative proteomic analysis of light adaptation in a globally significant marine cyanobacterium Prochlorococcus marinus MED4. J Proteome Res 6:996–1005

    Article  CAS  Google Scholar 

  • Park JJ, Wang HX, Gargouri M, Deshpande RR, Skepper JN, Holguin FO, Juergens MT, Shachar-Hill Y, Hicks LM, Gang DR (2015) The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis. Plant J 81:611–624

    Article  CAS  Google Scholar 

  • Peltier G, Tolleter D, Billon E, Cournac L (2010) Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 106:19–31

    Article  CAS  Google Scholar 

  • Polle JEW, Neofotis P, Huang A, Chang W, Sury K, Wiech EM (2014) Carbon partitioning in green algae (Chlorophyta) and the enolase enzyme. Metabolites 4:612–628

    Article  Google Scholar 

  • Procházková G, Brányiková I, Zachleder V, Brányik T (2014) Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J Appl Phycol 26:1359–1377

    Article  Google Scholar 

  • Ramanna L, Rawat I, Bux F (2017) Light enhancement strategies improve microalgal biomass productivity. Renew Sustain Energy Rev 80:765–773

    Article  Google Scholar 

  • Rastogi RP, Pandey A, Larroche C, Madamwar D (2017) Algal Green Energy—R & D and technological perspectives for biodiesel production. Renew Sustain Energy Rev 82:2946–2969

    Article  Google Scholar 

  • Raven JA (2010) Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth Res 106:123–134

    Article  CAS  Google Scholar 

  • Recht L, Töpfer N, Batushansky A, Sikron N, Gibon Y, Fait A, Nikoloski Z, Boussiba S, Zarka A (2014) Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen-starvation in the green algae Haematococcus pluvialis. J Biol Chem 289:30387–30403

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435

    Article  CAS  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson YH, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  Google Scholar 

  • Simionato D, Block MA, Rocca NL, Jouhet J, Maréchal E, Finazzi G, Morosinotto T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot Cell 12:665–676

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak MN (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. J Appl Phycol 20:245–251

    Article  CAS  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    Article  CAS  Google Scholar 

  • Ünlü C, Drop B, Croce R, van Amerongen H (2014) State transitions in Chlamydomonas reinhardtii strongly modulate the functional size of photosystem II but not of photosystem I. Proc Natl Acad Sci USA 111:3460–3465

    Article  Google Scholar 

  • Van de Wal M, D’Hulst C, Vincken JP, Buléon A, Visser R, Ball S (1998) Amylose is synthesized in vitro by extension of and cleavage from amylopectin. J Biol Chem 273:22232–22240

    Article  Google Scholar 

  • Venkata Subhash G, Rajvanshi M, Navish Kumar B, Govindachary S, Prasad V, Dasgupta S (2017) Carbon streaming in microalgae: extraction and analysis methods for high value compounds. Bioresour Technol 244:1304–1316

    Article  CAS  Google Scholar 

  • Wagner H, Jakob T, Lavaud J, Wilhelm C (2016) Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation. Photosynth Res 128:151–161

    Article  CAS  Google Scholar 

  • Wang YJ, Stessman DJ, Spalding MH (2015) The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how chlamydomonas works against the gradient. Plant J 82:429–448

    Article  Google Scholar 

  • Wase N, Black PN, Stanley BA, DiRusso CC (2014) Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J Proteome Res 13:1373–1396

    Article  CAS  Google Scholar 

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682

    Article  CAS  Google Scholar 

  • Wobbe L, Bassi R, Kruse O (2016) Multi-level light capture control in plants and green algae. Trends Plant Sci 21(1):55–68

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the following fundings: the National Natural Science Foundation of China (Project No. 41176105); the National Basic Research Fund of higher education (Project No. 21614101) and the National High Technology Research and Development Program of China (863 Program) (Project No. 2013AA065805).

Author information

Authors and Affiliations

Authors

Contributions

Ying Zhang, Huijuan Wu, Mingzhe Sun and Qianqian Peng conceived the study and performed the manuscript. Ying Zhang designed the study, analysed the results and drafted the manuscript. Aifen Li took part in designing the study, coordinated the study and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aifen Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 KB)

Supplementary material 2 (DOCX 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wu, H., Sun, M. et al. Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. Photosynth Res 138, 73–102 (2018). https://doi.org/10.1007/s11120-018-0549-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0549-1

Keywords

Navigation