Skip to main content

Advertisement

Log in

Characterization of cyanobacterial cells synthesizing 10-methyl stearic acid

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Recently, microalgae have attracted attention as sources of biomass energy. However, fatty acids from the microalgae are mainly unsaturated and show low stability in oxygenated environments, due to oxidation of the double bonds. The branched-chain fatty acid, 10-methyl stearic acid, is synthesized from oleic acid in certain bacteria; the fatty acid is saturated, but melting point is low. Thus, it is stable in the presence of oxygen and is highly fluid. We previously demonstrated that BfaA and BfaB in Mycobacterium chlorophenolicum are involved in the synthesis of 10-methyl stearic acid from oleic acid. In this study, as a consequence of the introduction of bfaA and bfaB into the cyanobacterium, Synechocystis sp. PCC 6803, we succeeded in producing 10-methyl stearic acid, with yields up to 4.1% of the total fatty acid content. The synthesis of 10-methyl stearic acid in Synechocystis cells did not show a significant effect on photosynthetic activity, but the growth of the cells was retarded at 34 °C. We observed that the synthesis of 10-methylene stearic acid, a precursor of 10-methyl stearic acid, had an inhibitory effect on the growth of the transformants, which was mitigated under microoxic conditions. Eventually, the amount of 10-methyl stearic acid present in the sulfoquinovosyl diacylglycerol and phosphatidylglycerol of the transformants was remarkably higher than that in the monogalactosyldiacylglycerol and digalactosyldiacylglycerol. Overall, we successfully synthesized 10-methyl stearic acid in the phototroph, Synechocystis, demonstrating that it is possible to synthesize unique modified fatty acids via photosynthesis that are not naturally produced in photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MGDG:

Monogalactosyldiacylglycerol

DGDG:

Digalactosyldiacylglycerol

SQDG:

Sulfoquinovosyldiacylglycerol

PG:

Phosphatidylglycerol

cobfaAB :

Codon-optimized bfaA and bfaB

GC:

Gas chromatography

FAME:

Fatty acid methyl ester

16:0:

Palmitic acid

16:1Δ9:

Palmitoleic acid

18:0:

Stearic acid

18:1Δ9:

Oleic acid

18:2Δ9,12:

Linoleic acid

18:3Δ6,9,12:

γ-Linolenic acid

18:3Δ9,12,15:

α-Linolenic acid

18:4Δ6,9,12,15:

Stearidonic acid

19:0Me10:

10-Methyl stearic acid

19:1∆Me10:

10-Methylene stearic acid.

References

  • Akamatsu Y, Law JH (1970) Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei. J Biol Chem 245:701–708

    CAS  PubMed  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Laneelle MA, Asselineau J. Barksdale L (1984) Description of Corynebacterium tuberculostearicum sp. nov., a leprosy-derived Corynebacterium. Ann Microbiol 135B:251–267

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Couderc F, Briel DD, Demont N, Gilard V, Promé JC (1991) Mass spectrometry as a tool for identifying group D2 corynebacteria by their fatty acid profiles. J Gen Microbiol 137:1903–1909

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE Jr, Nunn WE, Batchelor JG (1974) Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli. Biochim Biophys Acta 348:63–75

    Article  CAS  PubMed  Google Scholar 

  • Ercibengoa M, Bell M, Marimón JM, Humrighouse B, Klenk HP, Pötter G, Pérez-Trallero E (2016) Nocardia donostiensis sp. nov., isolated from human respiratory specimens. Antonie Van Leeuwenhoek 109:653–660

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Wang W, Zhao H, Lu X (2012) Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnol Biofuels 5:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grogan DW, Cronan JE Jr (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61:429–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hagglblom MM, Nohynek LJ, Palleroni NJ, Kronqvist K, Nurmiaho-Lassila EL, Salkinoja-Salonen MS, Klatte S, Kroppenstedt RM (1994) Transfer of polychlorophenol-degrading Rhodococcus chlorophenolicus (Apajalahti et al. 1986) to the genus Mycobacterium as Mycobacterium chlorophenolicum comb. nov.. Int J Syst Bacteriol 44:485–493

    Article  CAS  PubMed  Google Scholar 

  • Hwang CY, Lee I, Cho Y, Lee YM, Baek K, Jung YJ, Yang YY, Lee T, Rhee TS, Lee HK (2015) Rhodococcus aerolatus sp. nov., isolated from subarctic rainwater. Int J Syst Evol Microbiol 65:465–471

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka T, Shimada T, Okajima K, Yoshihara S, Ochiai Y, Katayama M, Ikeuchi M (2006) Characterization of cyanobacteriochrome TePixJ from a thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 47:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Jaureguiberry G, Law JH, McCloskey JA, Lederer E (1965) Studies on the mechanism of biological carbon alkylation reactions. Biochemistry 4:347–353

    Article  CAS  Google Scholar 

  • Khuller GK, Taneja R, Kaur S, Verma JN (1982) Lipid composition and virulence of Mycobacterium tuberculosis H37 Rv. Aust J Exp Biol Med Sci 60:541–547

    Article  CAS  PubMed  Google Scholar 

  • Kniazeva M, Crawford QT, Seiber M, Wang CT, Han M (2004) Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLOS Biol 2:1446–1459

    Article  CAS  Google Scholar 

  • Kotajima T, Shiraiwa Y, Suzuki I (2014) Functional screening of a novel ∆15 fatty acid desaturase from the coccolithophorid Emiliania huxleyi. Biochim Biophys Acta 1842:1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Lennarz WJ, Scheuerandt G, Bloch K (1962) The biosynthesis of oleic and 10-methylstearic acids in Mycobacterium phlei. J Biol Chem 237:664–671

    CAS  PubMed  Google Scholar 

  • Los DA, Ray MK, Murata N (1997) Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol 25:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Machida S, Shiraiwa Y, Suzuki I (2016) Construction of a cyanobacterium synthesizing cyclopropane fatty acids. Biochim Biophys Acta 1861:980–987

    Article  CAS  PubMed  Google Scholar 

  • Machida S, Bakku RK, Suzuki I (2017) Expression of genes for a flavin adenine dinucleotide-binding oxidoreductase and a methyltransferase from Mycobacterium chlorophenolicum is necessary for biosynthesis of 10-methyl stearic acid from oleic acid in Escherichia coli. Front Microbiol 8:2061

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata N, Wada H, Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33:933–941

    CAS  Google Scholar 

  • Ng AH, Berla BM, Pakrasi HB (2015) Fine-tuning of photoautotrophic protein production by combining promoters and neutral sites in the cyanobacterium Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 81:6857–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue–green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama K, Wang C, Besra GS (2005) Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 18:81–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K, Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15:6416–6425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsinoremas NF, Kutach AK, Strayer CA, Golden SS (1994) Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination. J Bacteriol 176:6764–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada H, Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30:971–978

    Article  CAS  Google Scholar 

  • Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92:1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada H, Gombos Z, Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91:4273–4277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AY, Grogan DW, Cronan JE Jr (1992) Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31:11020–11028

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167:766–778

    Article  CAS  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The genomic DNA of M. chlorophenolicum JCM 7439T was obtained from RIKEN BRC, which is a participant in the National BioResources Project of the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwane Suzuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 108 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machida, S., Suzuki, I. Characterization of cyanobacterial cells synthesizing 10-methyl stearic acid. Photosynth Res 139, 173–183 (2019). https://doi.org/10.1007/s11120-018-0537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0537-5

Keywords

Navigation