Skip to main content
Log in

Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In this work, we have compared photosynthetic characteristics of photosystem II (PSII) in Tradescantia leaves of two contrasting ecotypes grown under the low light (LL) and high light (HL) regimes during their entire growth period. Plants of the same genus, T. fluminensis (shade-tolerant) and T. sillamontana (sun-resistant), were cultivated at 50–125 µmol photons m−2 s−1 (LL) or at 875–1000 µmol photons m−2 s−1 (HL). Analyses of intrinsic PSII efficiency was based on measurements of fast chlorophyll (Chl) a fluorescence kinetics (the OJIP test). The fluorescence parameters Fv/Fm (variable fluorescence) and F0 (the initial level of fluorescence) in dark-adapted leaves were used to quantify the photochemical properties of PSII. Plants of different ecotypes showed different sustainability with respect to changes in the environmental light intensity and temperature treatment. The sun-resistant species T. sillamontana revealed the tolerance to variations in irradiation intensity, demonstrating constancy of maximum quantum efficiency of PSII upon variations of the growth light. In contrast to T. sillamontana, facultative shade species T. fluminensis demonstrated variability of PSII photochemical activity, depending on the growth light intensity. The susceptibility of T. fluminensis to solar stress was documented by a decrease in Fv/Fm and a rise of F0 during the long-term exposition of T. fluminensis to HL, indicating the loss of photochemical activity of PSII. The short-term (10 min) heat treatment of leaf cuttings caused inactivation of PSII. The temperature-dependent heating effects were different in T. fluminensis and T. sillamontana. Sun-resistant plants T. sillamontana acclimated to LL and HL displayed the same plots of Fv/Fm versus the treatment temperature (t), demonstrating a decrease in Fv/Fm at t ≥ 45 °C. The leaves of shadow-tolerant species T. fluminensis grown under the LL and HL conditions revealed different sensitivities to heat treatment. Plants grown under the solar stress conditions (HL) demonstrated a gradual decline of Fv/Fm at lower heating temperatures (t ≥ 25 °C), indicating the “fragility” of their PSII as compared to T. fluminensis grown at LL. Different responses of sun and shadow species of Tradescantia to growth light and heat treatment are discussed in the context of their biochemical and ecophysiological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. According to Ptushenko et al. (2018), in T. fluminensis leaves the contribution of PSI to Chl a fluorescence at room temperatures is insignificant as compared to PSII.

Abbreviations

CBC:

Calvin–Benson cycle

Chl:

Chlorophyll

ETC:

Electron transport chain

LHCI:

Light-harvesting complex I

LHCII:

Light-harvesting complex II

NPQ:

Non-photochemical quenching

PAM:

Pulse amplitude modulation

PQA and PQB :

Primary and secondary plastoquinones in PSII

PSA:

Photosynthetic apparatus

PSI and PSII:

Photosystem I and Photosystem II

References

  • Adams WW III, Demmig-Adams B (2004) Chlorophyll fluorescence as a tool to monitor plant response to the environment. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 583–604

    Chapter  Google Scholar 

  • Adamson HY, Chow WS, Anderson JM, Vesk M, Sutherland MW (1991) Photosynthetic acclimation of Tradescantia albiflora to growth irradiance: morphological, ultrastructural and growth responses. Physiol Plant 82:353–359

    Article  Google Scholar 

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophts Acta 1657:23–32

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 36:4149–4154

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta 1098:275–335

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37:93–136

    Article  CAS  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Google Scholar 

  • Anderson JM, Chow WS, Park Y-I, Franklin LA, Robinson SP-A, van Hasselt PR (2001) Response of Tradescantia albiflora to growth irradiance: change versus changeability. Photosynth Res 67:103–112

    Article  CAS  PubMed  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50:601–639

    Article  CAS  Google Scholar 

  • Bailey S, Walters RG, Jansson S, Horton P (2001) Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213:794–801

    Article  CAS  PubMed  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Oxborough K (2004) Chlorophyll fluorescence as a probe of photosynthetic productivity. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. Springer, Berlin, pp 65–82

    Chapter  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Inc, Malden

    Book  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–374

    Article  CAS  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  CAS  PubMed  Google Scholar 

  • Chow WS, Melis A, Anderson JM (1990) Adjustment of photosystems stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc Natl Acad Sci USA 87:7502–7505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis PA, Hangarter RP (2012) Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. Photosynth Res 112:153–161

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1998) Survey of thermal energy dissipation and pigment composition in sun and shade leaves. Plant Cell Physiol 39:474–482

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Cohu CM, Muller O, Adams WW III (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res 113:75–88

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Koh S-C, Cohu CM, Muller O, Stewart JJ, Adams WW III (2014) Non-photochemical fluorescence quenching in contrasting plant species and environments. In: Demmig-Adams B et al (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances photosynthesis and respiration.vol 40, Springer Science + Busines Media, Dordrecht, pp 531–552

    Google Scholar 

  • Dietzel L, Brautigam K, Pfannschmidt T (2008) Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry-functional relationships between short-term and long-term light quality acclimation in plants. FEBS J 275:1080–1088

    Article  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Edwards G, Walker D (1983) C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. University of California Press, Berkeley

    Google Scholar 

  • Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Guadagno CR, Ewers BE, Weinig C (2018) Circadian rhythms and redox state in plants: till stress do us part. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00247

    Article  PubMed  PubMed Central  Google Scholar 

  • Haehnel W (1984) Photosynthetic electron transport in higher plants. Annu Rev Plant Physiol 35:659–693

    Article  CAS  Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos Trans Roy Soc B 367:3455–3465

    Article  CAS  Google Scholar 

  • Huang W, Yang YJ, Zhang JL, Hu H, Zhang SB (2017) Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. Photosynth Res 132:293–303

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophts Acta 1817:182–193

    Article  CAS  Google Scholar 

  • Järvi S, Gollan PJ, Aro E-M (2013) Understanding the roles of the thylakoid lumen in photosynthetic regulation. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00434

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophts Acta 1757:362–368

    Article  CAS  Google Scholar 

  • Junge W, Nelson N (2015) ATP synthase. Annu Rev Biochem 83:631–657

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kong S-G, Wada M (2014) Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837:522–530

    Article  CAS  PubMed  Google Scholar 

  • Kono M, Terashima I (2014) Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photoch Photobio B 137:89–99

    Article  CAS  Google Scholar 

  • Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Gallé A, Gademann R, Winter K (2003) Capacity of protection against ultraviolet radiation in sun and shade leaves of tropical forest plants. Funct Plant Biol 30:533–542

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Grube E, Koroleva OY, Barth C, Winter K (2004) Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? Funct Plant Biol 31:743–756

    Article  PubMed  Google Scholar 

  • Krause GH, Winter K, Matsubara S, Krause B, Jahns P, Virgo A et al (2012) Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight. Photosynth Res 113:273–285

    Article  CAS  PubMed  Google Scholar 

  • Kreslavski VD, Schmitt F-J, Keuer C, Friedrich T, Shirshikova GN, Zharmukhamedov SK, Kosobryukhov AA, Allakhverdiev SI (2016) Response of the photosynthetic apparatus to UV-A and red light in the phytochrome B-deficient Arabidopsis thaliana L. hy3 mutant. Photosynthetica 54:321–330

    Article  CAS  Google Scholar 

  • Kreslavski VD, Los DA, Schmitt F-J, Zharmukhamedov SK, Kuznetsov VV, Allakhverdiev SI (2018) The impact of the phytochromes on photosynthetic processes. Biochim Biophys Acta 1859:400–408

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. J Exp Bot 56:337–346

    Article  CAS  PubMed  Google Scholar 

  • Lazár D (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. J Theor Biol 220:469–503

    Article  CAS  PubMed  Google Scholar 

  • Lemeille S, Rochaix J-D (2010) State transitions at the crossroad of thylakoid signalling pathways. Photosynth Res 106:33–46

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK (2009) Sensing and responding to excess light. Annu Rev Plant Biol 60:239–260

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. In: Lichtenthaler HK, Babani F (eds) Chlorophyll a fluorescence. Springer, New York, pp 713–736

    Chapter  Google Scholar 

  • Lichtenthaler HK, Babani F, Navrátil M, Buschmann C (2013) Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynth Res 117:355–366

    Article  CAS  PubMed  Google Scholar 

  • Maksimov EG, Mironov KS, Trofimova MS, Nechaeva NL, Todorenko DA, Klementiev KE, Tsoraev GV, Tyutyaev EV, Zorina AA, Feduraev PV, Allakhverdiev SI, Paschenko VZ, Los DA (2017) Membrane fluidity controls redox-regulated cold stress responses in cyanobacteria. Photosynth Res 133:215–223

    CAS  PubMed  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Jain L, Jajoo A (2018) Photosynthetic efficiency in sun and shade plants. Photosynthetica 56:354–365

    Article  CAS  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel K, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Förster B, Waterman M, Robinson SA, Pogson BJ, Gunning B, Osmond B (2012) From ecophysiology to phenomics: some implications of photoprotection and shade-sun acclimation in situ for dynamics of thylakoids in vitro. Phil Trans R Soc B 367:3503–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci 4:470. https://doi.org/10.3389/fpls.2013.00470

    Article  PubMed  PubMed Central  Google Scholar 

  • Minagawa J (2011) State transitions—the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim Biophys Acta 1807:897–905

    Article  CAS  PubMed  Google Scholar 

  • Mishanin VI, Trubitsin BV, Benkov MA, Minin AA, Tikhonov AN (2016) Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins. Photosynth Res 130:275–291

    Article  CAS  PubMed  Google Scholar 

  • Mishanin VI, Trubitsin BV, Patsaeva SV, Ptushenko VV, Solovchenko AE, Tikhonov AN (2017) Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content. Photosynth Res 133:87–102

    Article  CAS  PubMed  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41:445–502

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Science 22:11–19

    Article  CAS  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophts Acta 1767:414–421

    Article  CAS  Google Scholar 

  • Murchie EH, Harbinson J (2014) Non-photochemical fluorescence quenching across scales: from chloroplasts to plants to communities. In: Demmig-Adams B et al (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances photosynthesis and respiration, vol 40. Springer Science + Busines Media, Dordrecht, pp 553–582

    Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2011) Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II. Physiol Plant 142:35–46

    Article  CAS  PubMed  Google Scholar 

  • Oakley CG, Savage L, Lotz S, Larson GR, Thomashow MF, Kramer DM, Schemske DW (2018) Genetic basis of photosynthetic responses to cold in two locally adapted populations of Arabidopsis thaliana. J Exp Botany 69:699–709

    Article  CAS  Google Scholar 

  • Oguchi R, Hikosaka E, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous species. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Öquist G, Chow WS, Anderson JM (1992) Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosystem II. Planta 186:450–460

    Article  PubMed  Google Scholar 

  • Park Y-I, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111:867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfannschmidt T (2003) Chloroplast redox signals: how photosynthesis controls its own genes. Trends Plant Sci 8:33–41

    Article  CAS  PubMed  Google Scholar 

  • Ptushenko VV, Ptushenko EA, Samoilova OP, Tikhonov AN (2013) Chlorophyll fluorescence in the leaves of Tradescantia species of different ecological groups: induction events at different intensities of actinic light. Biosystems 114:85–97

    Article  CAS  PubMed  Google Scholar 

  • Ptushenko VV, Ptushenko OS, Samoilova OP, Solovchenko AE (2016) An exceptional irradiance-induced decrease of light trapping in two Tradescantia species: an unexpected relationship with the leaf architecture and zeaxanthin-mediated photoprotection. Biol Plantarum 60:385–393

    Article  CAS  Google Scholar 

  • Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN (2018) Three phases of energy-dependent induction of \({\text{P}}_{{700}}^{+}\) and Chl a fluorescence in Tradescantia fluminensis leaves. Photosynth Res. https://doi.org/10.1007/s11120-018-0494-z

    Article  PubMed  Google Scholar 

  • Randall RP (2012) A global compendium of weeds, 2nd edn. Department of Agriculture and Food, Western Australia, p 1125

  • Ruban A (2012) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Samoilova OP, Ptushenko VV, Kuvykin IV, Kiselev SA, Ptushenko OS, Tikhonov AN (2011) Effects of light environment on the induction of chlorophyll fluorescence in leaves: a comparative study of Tradescantia species of different ecotypes. BioSystems 105:41–48

    Article  CAS  PubMed  Google Scholar 

  • Schmitt F-J, Renger G, Friedrich T, Kreslavski VD, Zharmukhamedov SK, Los DA, Kuznetsov VV, Allakhverdiev SI (2014) Reactive oxygen species: re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta 1837:835–848

    Article  CAS  PubMed  Google Scholar 

  • Schöttler MA, Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higherplants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5, Article 188

  • Solovchenko A (2010) Photoprotection in plants, vol 14. Springer, Berlin (Springer series in biophysics)

    Book  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B 104:236–257

    Article  CAS  PubMed  Google Scholar 

  • Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Kirchhoff H (ed) Chloroplasts: current research and future trends. Caister Academic Press, Norfolk, pp 89–100

    Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2012) Energetic and regulatory role of proton potential in chloroplasts. Biochem (Moscow) 77:956–974

    Article  CAS  Google Scholar 

  • Tikhonov AN (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2015) Induction events and short-term regulation of electron transport in chloroplasts: an overview. Photosynth Res 125:65–94

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen M, Aro E-M (2012) Thylakoid protein phosphorylation in dynamic regulation of photosystem II in higher plants. Biochim Biophys Acta 1817:232–238

    Article  CAS  PubMed  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on OJIP-transient. Photosynth Res 93:193–203

    Article  CAS  PubMed  Google Scholar 

  • Wada M, Kagawa T, Sato Y (2003) Chloroplast movement. Annu Rev Plant Biol 54:455–468

    Article  CAS  PubMed  Google Scholar 

  • Witt HT (1979) Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods. Biochim Biophys Acta 505:355–427

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Yoshioka-Nishimura M (2016) Photoinhibition and the damage repair cycle of photosystem II. In: Kirchhoff H (ed) Chloroplasts. Current research and future trends. Caister Academic Press, Poole, pp 161–170

    Google Scholar 

  • Zurzycki J (1955) Chloroplasts arrangement as a factor in photosynthesis. Acta Soc Bot Pol 24:27–63

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (Grant 18-04-00214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benkov, M.A., Yatsenko, A.M. & Tikhonov, A.N. Light acclimation of shade-tolerant and sun-resistant Tradescantia species: photochemical activity of PSII and its sensitivity to heat treatment. Photosynth Res 139, 203–214 (2019). https://doi.org/10.1007/s11120-018-0535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0535-7

Keywords

Navigation