Skip to main content

Advertisement

Log in

Regulation of excitation energy in Nannochloropsis photosystem II

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Recently, we isolated a complex consisting of photosystem II (PSII) and light-harvesting complexes (LHCs) from Nannochloropsis granulata (Umetani et al. Photosynth Res 136:49–61, 2017). This complex contained stress-related protein, Lhcx, as a major component of LHC (Protein ID is Naga_100173g12.1), suggesting that non-photochemical quenching activities may be taking place in the PSII-LHC complex. In this study, we examined the energy transfer dynamics in the isolated LHCs and PSII-LHC complexes, and found substantial quenching capacity. In addition, the LHCs contained low-energy chlorophylls with fluorescence maxima at approximately 710 nm, which may enhance the quenching efficiency in the PSII-LHC. Delayed fluorescence analysis suggested that there was an approximately 50% reduction in energy trapping at the PSII reaction center in the PSII-LHC supercomplex under low-pH condition compared to neutral pH condition. Enhanced quenching may confer a survival advantage in the shallow-water habitat of Nannochloropsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PSII:

Photosystem II

LHC:

Light-harvesting complex

CN-PAGE:

Clear-native polyacrylamide gel electrophoresis

FDAS:

Fluorescence decay-associated spectra

References

  • Akimoto S, Teshigahara A, Yokono M, Mimuro M, Nagao R, Tomo T (2014) Excitation relaxation dynamics and energy transfer in fucoxanthin-chlorophyll a/c-protein complexes, probed by time-resolved fluorescence. Biochim Biophys Acta 1837:1514–1521. https://doi.org/10.1016/j.bbabio.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ (2008) Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth Res 95:169–174

    Article  CAS  PubMed  Google Scholar 

  • Bína D, Gardian Z, Herbstová M, Kotabová E, Koník P, Litvín R, Prášil O, Tichý J, Vácha F (2014) Novel type of red-shifted chlorophyll a antenna complex from Chromera velia: II. Biochemistry and spectroscopy. Biochim Biophys Acta 1837(6):802–810

    Article  CAS  PubMed  Google Scholar 

  • Chmeliov J, Gelzinis A, Songaila E, Augulis R, Duffy CD, Ruban AV, Valkunas L (2016) The nature of self-regulation in photosynthetic light-harvesting antenna. Nat Plants 2:16045

    Article  CAS  PubMed  Google Scholar 

  • Chukhutsina VU, Fristedt R, Morosinotto T, Croce R (2017) Photoprotection strategies of the alga Nannochloropsis gaditana. Biochim Biophys Acta 1858(7):544–552. https://doi.org/10.1016/j.bbabio.2017.05.003

    Article  CAS  Google Scholar 

  • Daugbjerg N, Andersen RA (1997) A molecular phylogeny of the heterokont algae based on analyses of chloroplastencoded rbcL sequence data1. J Phycol 33:1031–1041

    Article  CAS  Google Scholar 

  • Fisher T, Minnaard J, Dubinsky Z (1996) Photoacclimation in the marine alga Nannochloropsis sp.(Eustigmatophyte): a kinetic study. J Plankton Res 18:1797–1818

    Article  Google Scholar 

  • Gelzinis A, Chmeliov J, Ruban AV, Valkunas L (2017) Can red-emitting state be responsible for fluorescence quenching in LHCII aggregates? Photosynth Res 135:275–284

    Article  CAS  PubMed  Google Scholar 

  • Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052. https://doi.org/10.1016/j.bbabio.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y et al (2013) Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. Biochim Biophys Acta 1827:529–539

    Article  CAS  PubMed  Google Scholar 

  • Jennings RC, Zucchelli G, Finzi L, Garlaschi FM (1996) Spectral heterogeneity and energy equilibration in higher plant photosystems. In: light as an energy source and information carrier in plant physiology. Springer, New York, pp 65–74

    Chapter  Google Scholar 

  • Jordan P, Fromme P, Witt H, Klukas O, Saenger W, Krau N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kell A et al (2014) Charge-transfer character of the low-energy Chl a Qy absorption band in aggregated light harvesting complexes II. J Phys Chem B 118:6086–6091. https://doi.org/10.1021/jp501735p

    Article  CAS  PubMed  Google Scholar 

  • Khoroshyy P, Bína D, Gardian Z, Litvín R, Alster J, Pšenčík J (2018) Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynth Res 135(1–3):213–225

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk N, Rappaport F, Boyen C, Wollman F-A, Collén J, Joliot P (2013) Photosynthesis in Chondrus crispus: the contribution of energy spill-over in the regulation of excitonic flux. Biochim Biophys Acta 1827:834–842. https://doi.org/10.1016/j.bbabio.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  • Krienitz L, Hepperle D, Stich H-B, Weiler W (2000) Nannochloropsis limnetica (Eustigmatophyceae), a new species of picoplankton from freshwater. Phycologia 39:219–227

    Article  Google Scholar 

  • Mazor Y, Borovikova A, Nelson N (2015) The structure of plant photosystem I super-complex at 2.8 Å resolution. Elife 4:e07433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miloslavina Y, Grouneva I, Lambrev PH, Lepetit B, Goss R, Wilhelm C, Holzwarth AR (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochim Biophys Acta 1787:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem i properties in the primordial Cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Akimoto S, Tomo T (2013) High excitation energy quenching in Fucoxanthin chlorophyll A/C-binding protein complexes from the diatom Chaetoceros gracilis. J Phys Chem B 117:6888 – 6895

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Teshigahara A, Akimoto S, Tomo T (2014a) Light-harvesting ability of the Fucoxanthin chlorophyll a/c-binding protein associated with photosystem II from the diatom Chaetoceros gracilis as Revealed by Picosecond Time-Resolved Fluorescence Spectroscopy. J Phys Chem B 118:5093–5100

    Article  CAS  PubMed  Google Scholar 

  • Nagao R, Yokono M, Tomo T, Akimoto S (2014b) Control mechanism of excitation energy transfer in a complex consisting of photosystem II and fucoxanthin chlorophyll a/c binding protein. J Phys Chem Lett 5:2983–2987

    Article  CAS  PubMed  Google Scholar 

  • O’Connor D, Phillips D (1984) Time-correlated single photon counting. Academic, London

    Google Scholar 

  • Owens TG, Wold ER (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum I. Isolation and characterization of pigment-protein complexes. Plant Physiol 80:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Suga M, Kuang T, Shen J-R (2015) Structural basis for energy transfer pathways in the plant PSI-LHCI supercomplex. Science 348:989–995. https://doi.org/10.1126/science.aab0214

    Article  CAS  PubMed  Google Scholar 

  • Sandnes J, Källqvist T, Wenner D, Gislerød HR (2005) Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. J Appl Phycol 17:515–525

    Article  Google Scholar 

  • Simionato D, Sforza E, Carpinelli EC, Bertucco A, Giacometti GM, Morosinotto T (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour Technol 102(10):6026–6032

    Article  CAS  PubMed  Google Scholar 

  • Sonneveld A, Rademaker H, Duysens LN (1980) Microsecond delayed fluorescence of photosystem II of photosynthesis in various algae: emission spectra and uphill energy transfer. FEBS Lett 113:323–327

    Article  CAS  Google Scholar 

  • Sukenik A, Livne A, Apt KE, Grossman AR (2000) Characterization of a gene encoding the LIGHT harvesting violaxanthin chlorophyll protein of nannochloropsis sp.(Eustigmatophyceae). J Phycol 36:563–570

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31:880–888

    Article  Google Scholar 

  • Tikkanen M, Grieco M, Kangasjärvi S, Aro E-M (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152:723–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno Y, Aikawa S, Kondo A, Akimoto S (2016) Energy transfer in Cyanobacteria and Red Algae: confirmation of spillover in intact megacomplexes of phycobilisome and both photosystems. J Phys Chem Lett 7:3567–3571

    Article  CAS  PubMed  Google Scholar 

  • Umetani I, Kunugi M, Yokono M, Takabayashi A, Tanaka A (2017) Evidence of the supercomplex organization of photosystem II and light-harvesting complexes in Nannochloropsis granulata. Photosynth Res 136:49–61

    Article  CAS  PubMed  Google Scholar 

  • Walsh P, Legendre L (1983) Photosynthesis of natural phytoplankton under high frequency light fluctuations simulating those induced by sea surface waves. Limnol Oceanogr 28:688–697

    Article  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between Photosystem II and Photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759. https://doi.org/10.1016/j.bbabio.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Nagao R, Tomo T, Akimoto S (2015a) Regulation of excitation energy transfer in diatom PSII dimer: how does it change the destination of excitation energy? Biochim Biophys Acta 1847:1274–1282. https://doi.org/10.1016/j.bbabio.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  • Yokono M, Takabayashi A, Akimoto S, Tanaka A (2015b) A megacomplex composed of both photosystem reaction centres in higher plants. Nat Commun 6:6675. https://doi.org/10.1038/ncomms7675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI Grant No. 16H06553 to S. Akimoto, grant-in-aid for Young Scientists 23770035 to A. Takabayashi, and Scientific Research Grant 24370017 to A. Tanaka) and the University College of Southeast Norway. We thank Shelley Robison, PhD, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makio Yokono.

Ethics declarations

Conflict of interest

M.Y. is employee of NIPPON FLOUR MILLS Co.,Ltd.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokono, M., Umetani, I., Takabayashi, A. et al. Regulation of excitation energy in Nannochloropsis photosystem II. Photosynth Res 139, 155–161 (2019). https://doi.org/10.1007/s11120-018-0510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0510-3

Keywords

Navigation