Skip to main content
Log in

Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In diverse terrestrial cyanobacteria, Far-Red Light Photoacclimation (FaRLiP) promotes extensive remodeling of the photosynthetic apparatus, including photosystems (PS)I and PSII and the cores of phycobilisomes, and is accompanied by the concomitant biosynthesis of chlorophyll (Chl) d and Chl f. Chl f synthase, encoded by chlF, is a highly divergent paralog of psbA; heterologous expression of chlF from Chlorogloeopsis fritscii PCC 9212 led to the light-dependent production of Chl f in Synechococcus sp. PCC 7002 (Ho et al., Science 353, aaf9178 (2016)). In the studies reported here, expression of the chlF gene from Fischerella thermalis PCC 7521 in the heterologous system led to enhanced synthesis of Chl f. N-terminally [His]10-tagged ChlF7521 was purified and identified by immunoblotting and tryptic-peptide mass fingerprinting. As predicted from its sequence similarity to PsbA, ChlF bound Chl a and pheophytin a at a ratio of ~ 3–4:1, bound β-carotene and zeaxanthin, and was inhibited in vivo by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Cross-linking studies and the absence of copurifying proteins indicated that ChlF forms homodimers. Flash photolysis of ChlF produced a Chl a triplet that decayed with a lifetime (1/e) of ~ 817 µs and that could be attributed to intersystem crossing by EPR spectroscopy at 90 K. When the chlF7521 gene was expressed in a strain in which the psbD1 and psbD2 genes had been deleted, significantly more Chl f was produced, and Chl f levels could be further enhanced by specific growth-light conditions. Chl f synthesized in Synechococcus sp. PCC 7002 was inserted into trimeric PSI complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Airs R, Temperton B, Sambles C, Farnham G, Skill SC, Llewellyn CA (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Lett 588:3770–3777

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Kreslavski V, Zharmukhamedov SK, Voloshin RA, Korol’kova DV, Tom T, Shen J-R (2016) Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry 81:201–212

    CAS  PubMed  Google Scholar 

  • Barber J (2017) A mechanism for water splitting and oxygen production in photosynthesis. Nat Plant 3:17041–17046

    Article  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryant DA (1991) Cyanobacterial phycobilisomes; progress toward complete structural and functional analysis via molecular genetics. In: Bogorad L, Vasil IK (eds) Cell Culture and somatic cell genetics of plants, Vol 7B, Academic Press, London, pp 257–300

    Google Scholar 

  • Cardona T, Murray JW, Rutherford AW (2015) Origin and evolution of water oxidation before the last common ancestor of the cyanobacteria. Mol Biol Evol 32:1310–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M (2014) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu Rev Biochem 83:317–340

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends Plant Sci 16:427–431

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Schliep M, Willows RD, Cai Z, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329:1318–1319

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f—a red absorbing photopigment. FEBS Lett 586:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Dubbs JM, Bryant DA (1991) Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena species PCC 7409. Mol Microbiol 5:3073–3085

    Article  CAS  PubMed  Google Scholar 

  • Eijckelhoff C, Dekker JP (1997) A routine method to determine the chlorophyll a, pheophytin a, and β-carotene contents of isolated photosystem complexes. Photosynth Res 52:69–73

    Article  CAS  Google Scholar 

  • Ferlez B, Cowgill JB, Dong W, Gisriel C, Lin S, Flores M, Walters K, Cetnar D, Redding KE, Golbeck JH (2016) Thermodynamics of the electron acceptors in Heliobacterium modesticaldum: an exemplar of an early homodimeric type I photosynthetic reaction center. Biochemistry 55:2358–2370

    Article  CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Sakuragi Y, Bryant DA (2004) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. Meth Mol Biol 274325–274340

  • Fujita Y, Murakami A (1987) Regulation of electron transport composition in cyanobacterial photosynthetic system: stoichiometry among photosystem I and II complexes and their light-harvesting antennae and cytochrome b 6/f complex. Plant Cell Physiol 28:1547–1553

    CAS  Google Scholar 

  • Gan F, Bryant DA (2015) Adaptive and acclimative responses of cyanobacteria to far-red light. Environ Microbiol 17:3450–3465

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317

    Article  CAS  PubMed  Google Scholar 

  • Gan F, Shen G, Bryant DA (2015) Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life 5:4–24

    Article  CAS  Google Scholar 

  • Gary H, Loughlin RC, Willows RD, Chen M (2017) The C21-formyl group in chlorophyll f originates from molecular oxygen. J Biol Chem 292:19279–19289

    Article  Google Scholar 

  • Gingrich JC, Gasparich GE, Sauer K, Bryant DA (1990) Nucleotide sequence and expression of the two genes encoding D2 protein and the single gene encoding the CP43 protein of Photosystem II in the cyanobacterium Synechococcus sp. PCC 7002. Photosynth Res 24:137–150

    CAS  PubMed  Google Scholar 

  • Graham JE, Bryant DA (2009) The biosynthetic pathway for myxol-2′ fucoside (myxoxanthophyll) in the cyanobacterium Synechococcus sp. strain PCC 7002. J Bacteriol 191:3292–3300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hays AA, Vassiliev IR, Golbeck JH, Debus RJ (1998) Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study. Biochemistry 37:11352–11365

    Article  CAS  PubMed  Google Scholar 

  • Ho M-Y, Shen G, Canniffe DP, Zhao C, Bryant DA (2016) Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of Photosystem II. Science 353:213–227

    Article  CAS  Google Scholar 

  • Ho M-Y, Gan F, Shen G, Zhao C, Bryant DA (2017a) Far-Red Light Photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. regulation of FaRLiP gene expression. Photosynth Res 131:173–186

    Article  CAS  PubMed  Google Scholar 

  • Ho M-Y, Gan F, Shen G, Bryant DA (2017b) Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynth Res 131:187–202

    Article  CAS  PubMed  Google Scholar 

  • Ho M-Y, Soulier T, Canniffe DP, Shen G, Bryant DA (2017c) Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Curr Opin Plant Biol 37:24–33

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci USA 93:13–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kandrashkin YE, Poddutoori PK, van der Est A (2006) Novel Intramolecular electron transfer in axial bis(terpyridoxy)phosphorus(V) porphyrin studied by time-resolved EPR spectroscopy. Appl Magn Reson 30:605–618

    Article  CAS  Google Scholar 

  • Kashiyama Y, Miyashita H, Ohkubo S, Ogawa NO, Chikaraishi Y, Takano Y, Suga H, Toyofuku T, Nomaki H, Kitazato H, Nagata T, Ohkouchi N (2008) Evidence for global chlorophyll d. Science 321:658–658

    Article  CAS  PubMed  Google Scholar 

  • Kurashov V, Gorka M, Milanovsky GE, Johnson TW, Cherepanov DA, Semenov AY, Golbeck JH (2018) Critical evaluation of electron transfer kinetics in P700-FA/FB, P700-FX, and P700-A1 Photosystem I core complexes in liquid and in trehalose glass. Biochim Biophys Acta 1859:1288–1301

    Article  CAS  Google Scholar 

  • Lambert DH, Stevens SE Jr (1986) Photoheterotrophic growth of Agmenellum quadruplicatum PR-6. J Bacteriol 165:654–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Frigaard N-U, Bryant DA (2006) Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from. Chlorobium tepidum Biochemistry 45:9095–9103

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochim Biophys Acta 1817:1292–1298

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lin Y, Loughlin PC, Chen M (2014) Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris—a filamentous cyanobacterium containing Chl f. Front Plant Sci 5:67

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Lin Y, Garvey CJ, Birch D, Corkery RW, Loughlin PC, Scheer H, Willows RD, Chen M (2016) Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochim Biophys Acta 1857:107–114

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loughlin PC, Willows RD, Chen M (2014) In vitro conversion of vinyl to formyl groups in naturally occurring chlorophylls. Sci Rep 4:6069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Bryant DA (2011) Transcription profiling of the cyanobacterium Synechococcus sp. PCC 7002 using high-throughput cDNA sequencing. Front Microbiol 2:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning WM, Strain HH (1943) Chlorophyll d, a green pigment in red algae. J Biol Chem 151:1–19

    CAS  Google Scholar 

  • Mattoo AK, Pick U, Hoffman-Falk H, Edelman M (1981) The rapidly metabolized 32000 dalton polypeptide is the proteinaceous shield regulating photosystem II electron transport and mediating diuron herbicide sensitivity in chloroplasts. Proc Natl Acad Sci USA 78:1572–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402–403

    Article  CAS  Google Scholar 

  • Miyashita H, Ohkubo S, Komatsu H, Sorimachi Y, Fukayama D, Fujinuma D, Akutsu S, Kobayashi M (2014) Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, Isolated from Lake Biwa. J Phys Chem Biophys 4:149

    Article  CAS  Google Scholar 

  • Montgomery BL (2016) Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. J Exp Bot 67:4079–4090

    Article  CAS  PubMed  Google Scholar 

  • Murray JW (2012) Sequence variation at the oxygen evolving centre of photosystem II: a new class of ‘rogue’ cyanobacterial D1 proteins. Photosynth Res 110:177–184

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ, Trost JT, Diner BA (1992) Role of the carboxy-terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31:10859–10871

    Article  CAS  PubMed  Google Scholar 

  • Nürnberg DJ, Morton J, Santabarbara S, Telfer A, Joliot P, Antonaru LA, Ruban AV, Cardona T, Krausz E, Boussac A, Fantuzzi A, Rutherford AW (2018) Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 360:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Ramos M, Canniffe DP, Radle MI, Hunter CN, Bryant DA, Golbeck JH (2018) Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides. Biochim Biophys Acta 1859:501–509

    Article  CAS  Google Scholar 

  • Pérez AA, Gajewski JP, Ferlez BH, Ludwig M, Baker CS, Golbeck JH, Bryant DA (2016) A Zn++-inducible expression platform for Synechococcus sp. strain PCC 7002 based on the smtA promoter/operator and SmtB repressor. Appl Environ Microbiol 83:e02491–e02416

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 278:1–61

    Google Scholar 

  • Schliep M, Crossett B, Willows RD, Chen M (2010) 18O labeling of chlorophyll d in Acaryochloris marina reveals that chlorophyll a and molecular oxygen are precursors. J Biol Chem 285:28450–28456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J-R (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu Rev Plant Biol 66:23–48

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Bryant DA (1995) Characterization of a Synechococcus sp. strain PCC 7002 mutant lacking Photosystem I. Protein assembly and energy distribution in the absence of the Photosystem I reaction center core complex. Photosynth Res 44:41–53

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA (2002) Assembly of Photosystem I: I. Inactivation of the rubA gene encoding a membrane-associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem 277:20343–20354

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Schluchter WM, Bryant DA (2008) Biogenesis of phycobiliproteins. I. cpcS and cpcU mutants of the cyanobacterium Synechococcus sp. PCC 7002. Identify a phyocobiliprotein lyase specific for Cys-82/84 Sites of the β-phycocyanin and allophycocyanin subunits. J Biol Chem 283:7503–7512

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Gan F, Bryant DA (2016) The siderophilic cyanobacterium Leptolyngbya sp. strain JSC-1 acclimates to iron starvation by expressing multiple isiA-family genes. Photosynth Res 128:325–340

    Article  CAS  PubMed  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliproteon structure. In: Bryant DA (ed) The Molecular biology of cyanobacteria. Kluwer Academic Press, Dordrecht, pp 139–216

    Chapter  Google Scholar 

  • Thurnauer (1979) ESR study of the photoexcited triplet state in photosynthetic bacteria. Chem Res Intermed 3:197–230

    Article  CAS  Google Scholar 

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Vassiliev IR, Jung YS, Mamedov MD, Semenov AY, Golbeck JH (1997) Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J 72:301–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Alvey RM, Byrne PO, Graham JE, Shen G, Bryant DA (2011) Expression of genes in cyanobacteria from endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Meth Mol Biol 684:273–293

    Article  CAS  Google Scholar 

  • Yoneda A, Wittmann BJ, King JD, Blankenship RE, Dantas G (2016) Transcriptomic analysis illuminates genes involved in chlorophyll synthesis after nitrogen starvation in Acaryochloris sp. CCMEE 5410. Photosynth Res 129:171–182

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vermmas WFJ (1990) Transcript levels and synthesis of photosystem II components in cyanobacterial mutants with inactivated photosystem II genes. Plant Cell 2:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li Z, Shen G, Golbeck JH, Bryant DA (2014) Vipp1 in Synechococcus sp. PCC 7002 is not essential but is required for photosystem I assembly. J Biol Chem 289:15904–15914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Gan F, Shen G, Bryant DA (2015) RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). Front Microbiol 6:1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Zhang H, Zhu Y, Gao G, Zhang Y, Li Y, Ma Y (2014) Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 4:4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grant MCB-1613022 to D.A.B and J.H.G. This research was also conducted under the auspices of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the DOE, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035 (D.A.B.). A.v.d.E. acknowledges support from the Natural Science and Engineering Research Council, Canada in the form of a Discovery Grant. D.P.C. was supported by a European Commission Marie Skłodowska-Curie Global Fellowship (660652). The authors thank Yue Lu at Washington University in St. Louis for performing the mass spectrometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald A. Bryant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 652 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, G., Canniffe, D.P., Ho, MY. et al. Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynth Res 140, 77–92 (2019). https://doi.org/10.1007/s11120-018-00610-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-00610-9

Keywords

Navigation