Photosynthesis Research

, Volume 131, Issue 2, pp 121–144 | Cite as

Time-resolved infrared spectroscopy in the study of photosynthetic systems



Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques—dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR—underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.


FTIR difference spectroscopy Step-scan FTIR Vibrational spectroscopy Rapid-scan FTIR Infrared Electron transfer Proton transfer Reaction centers Ubiquinone Light-harvesting systems Bacterial reaction centers Photosystem I Photosystem II 



The authors thank Prof. G. Venturoli and Dr. M. Malferrari for stimulating discussion. A.M. thanks COST Action TD1102- Phototech for giving him the possibility of fruitful discussions with several European scientists working in photosynthesis research.


  1. Alexandre M, van Grondelle R (2012) Time-resolved FTIR difference spectroscopy reveals the structure and dynamics of carotenoids and chlorophyll triplets in photosynthetic light-harvesting complexes. In: Theophanides T (ed) Infrared spectroscopy—life and biomedical sciences; InTechopen: Rijeka, Croatia, pp 231–256Google Scholar
  2. Alexandre MT, Lührs DC, van Stokkum IH, Hiller R, Groot ML, Kennis JT, van Grondelle R (2007) Triplet state dynamics in peridinin-chlorophyll-a-protein: a new pathway of photoprotection in LHCs? Biophys J 93:2118–2128PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ataka K, Kottke T, Heberle J (2010) Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems. Angew Chem Int Ed 49:5416–5424CrossRefGoogle Scholar
  4. Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta Biomembr 1828:2283–2293CrossRefGoogle Scholar
  5. Badura A, Esper B, Ataka K, Grunwald C, Wöll C, Kuhlmann J, Heberle J, Rögner M (2006) Light-driven water splitting for (bio-)hydrogen production: photosystem 2 as the central part of a bioelectrochemical device. Photochem Photobiol 82:1385–1390PubMedCrossRefGoogle Scholar
  6. Barry BA, Cooper IB, De Riso A, Brewer SH, Vu DM, Dyer RB (2006) Time-resolved vibrational spectroscopy detects protein-based intermediates in the photosynthetic oxygen-evolving cycle. Proc Natl Acad Sci USA 103:7288–7291PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bartel K, Mäntele W, Siebert F, Kreutz W (1985) Time-resolved infrared studies of light-induced processes in plant thylakoids and bacterial chromatophore membranes. Evidence for the function of water molecules and the polypeptides in energy dissipation. Biochim Biophys Acta Bioenerg 808:300–315CrossRefGoogle Scholar
  8. Berthomieu C, Hienerwadel R (2009) Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101:157–170PubMedCrossRefGoogle Scholar
  9. Blanchet L, Mezzetti A, Ruckebusch C, Huvenne JP, de Juan A (2007a) Multivariate curve resolution of rapid-scan FTIR difference spectra of quinone photoreduction in bacterial photosynthetic membranes. Anal Bioanal Chem 387:1863–1874PubMedCrossRefGoogle Scholar
  10. Blanchet L, Ruckebusch C, Huvenne JP, de Juan A (2007b) Hybrid hard- and soft-modeling applied to difference spectra. Chemom Intell Lab Syst 89:26–35CrossRefGoogle Scholar
  11. Blanchet L, Ruckebusch C, Huvenne JP, de Juan A (2008) Focus on the potential of hybrid hard-and soft-MCR-ALS in time resolved spectroscopy. J Chemometr 22:666–673CrossRefGoogle Scholar
  12. Blanchet L, Ruckebusch C, Mezzetti A, Huvenne JP, de Juan A (2009) Monitoring and interpretation of photoinduced biochemical processes by rapid-scan FTIR difference spectroscopy and hybrid hard and soft modeling. J Phys Chem B 113:6031–6040PubMedCrossRefGoogle Scholar
  13. Bonetti C, Alexandre MTA, Hiller RG, Kennis JTM, van Grondelle R (2009) Chl-a triplet quenching by peridinin in H-PCP and organic solvent revealed by step-scan FTIR time-resolved spectroscopy. Chem Phys 357:63–69CrossRefGoogle Scholar
  14. Bovi D, Mezzetti A, Vuilleumier R, Gaigeot MP, Chazallon B, Spezia R, Guidoni L (2011) Environmental effects on vibrational properties of carotenoids: experiments and calculations on peridinin. Phys Chem Chem Phys 13:20954–20964PubMedCrossRefGoogle Scholar
  15. Bovi D, Mezzetti A, Guidoni L (2016) QM/MM dynamics of a Peridinin model in triplet state in three prototypical solvents. Vib Spectrosc. doi: 10.1016/j.vibspec.2016.07.010 Google Scholar
  16. Breton J (2006) FTIR studies of the primary donor P700. In: Goldbeck JH (ed) Photosystem I: the light-driven plastocyanin:ferrodoxin oxidoreductase. Springer, New York, pp 271–289Google Scholar
  17. Breton J (2007) Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones. Biochemistry 46:4459–4465PubMedCrossRefGoogle Scholar
  18. Breton J, Nabedryk E (1993) So → T1 infrared difference spectrum of the triplet state of the primary electron donor in Rb. sphaeroides photosynthetic bacterial reaction centers. Chem Phys Lett 213:571–575CrossRefGoogle Scholar
  19. Breton J, Nabedryk E (1996) Protein-quinone interactions in the bacterial photosynthetic reaction center: light-induced FTIR difference spectroscopy of the quinone vibrations. Biochim Biophys Acta Bioenerg 1275:84–90CrossRefGoogle Scholar
  20. Breton J, Nabedryk E, Mioskowski C, Boullais C (1996) Protein-quinone interactions in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy. In: Michel-Beyerle ME (ed) The reaction center of photosynthetic bacteria. Springer, Structure and Dynamics, pp 381–395CrossRefGoogle Scholar
  21. Breton J, Nabedryk E, Clerici A (1999) Light-induced FTIR difference spectroscopy of photosynthetic charge separation between 9000 and 250 cm−1. Vib Spectrosc 19:71–75CrossRefGoogle Scholar
  22. Brudler R, Gerwert K (1998) Step-scan FTIR spectroscopy resolved the QA QB → QAQB transition in Rb. sphaeroides R26 reaction centres. Photosynth Res 55:261–266Google Scholar
  23. Burie JR, Leibl W, Nabedryk E, Breton J (1993) Step-scan FT-IR spectroscopy of electron transfer in the photosynthetic bacterial reaction center. Appl Spectrosc 47:1401–1404CrossRefGoogle Scholar
  24. Carbonera D, di Valentin M, Spezia R, Mezzetti A (2014) The unique photophysical properties of the peridinin-chlorophyll-a-protein. Curr Protein Pept Sci 15:332–350PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen P, Palmer RA (1997) Ten nanosecond step-scan FT-IR absorption difference time-resolved spectroscopy: applications to excited states of transition metal complexes. Appl Spectrosc 51:580–583CrossRefGoogle Scholar
  26. Chu HA (2013) Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation. Front Plant Sci 4:146PubMedPubMedCentralCrossRefGoogle Scholar
  27. Di Donato M, Groot ML (2015) Ultrafast infrared spectroscopy in photosynthesis. Biochim Biophys Acta Bioenerg 1847:2–11CrossRefGoogle Scholar
  28. Fleischer AJ, Bjork BJ, Bui TQ, Cossel KC, Okumura M, Ye J (2014) Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J Phys Chem Lett 5:2241–2246CrossRefGoogle Scholar
  29. Fogel C, Grzybek S, Hienerwadel R, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Time-resolved infrared and steady-state Fourier transform infrared spectroscopy of native and mutant reaction centers of Rhodobacter sphaeroides. In: Mathis P (ed) Photosynthesis: from light to biosphere (proceedings of the Xth international photosynthesis congress, in Montpellier, France, August 20–25, 1995) Springer, The Netherlands, pp 591–594Google Scholar
  30. Gall A, Berera R, Alexandre MTA, Pascal AA, Bordes L, Mendes-Pinto MM, Andrianambinintsoa S, Stoitchkova KV, Marin A, Valkunas L, Horton P, Kennis JT, van Grondelle R, Ruban A, Robert B (2011) Molecular adaptation of photoprotection: triplet states in light-harvesting proteins. Biophys J 101:934–942PubMedPubMedCentralCrossRefGoogle Scholar
  31. Garczarek F, Wang J, El-Sayed M, Gerwert K (2004) The assignment of the different infrared continuum absorbance changes observed in the 3000–1800 cm−1 region during the bacteriorhodopsin photocycle. Biophys J 87:2676–2682PubMedPubMedCentralCrossRefGoogle Scholar
  32. Garczarek F, Brown LS, Lanyi JK, Gerwert K (2005) Proton binding within a membrane protein by a protonated water cluster. Proc Natl Acad Sci USA 102:3633–3638PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gerwert K (2002) Molecular reaction mechanism of proteins monitored by time-resolved FT-IR difference spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. John Wiley, Chirchester, pp 3536–3555Google Scholar
  34. Giotta L, Mastrogiacomo D, Italiano F, Milano F, Agostiano A, Nagy K, Valli L, Trotta M (2011) Reversible binding of metal ions onto bacterial layers revealed by protonation-induced ATR-FTIR difference spectroscopy. Langmuir 27:3762–3773PubMedCrossRefGoogle Scholar
  35. Goff KL, Quaroni L, Wilson KE (2009) Measurement of metabolite formation in single living cells of Chlamydomonas reinhardtii using synchrotron Fourier-transform infrared spectromicroscopy. Analyst 134:2216–2219PubMedCrossRefGoogle Scholar
  36. Grills DC, George MW (2002) Fast and ultrafast time-resolved mid-infrared spectrometry using lasers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 677–692Google Scholar
  37. Hashimoto M, Yuzawa T, Kato C, Iwata K, Hamaguchi H (2002) Fast time-resolved mid-infrared spectroscopy using grating spectrometers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 666–676Google Scholar
  38. Hastings G (2006) Fourier transform infrared studies of the secondary electron acceptor A1. In: Goldbeck JH (ed) Photosystem I: the light-driven plastocyanin: ferrodoxin oxidoreductase. Springer, New York, pp 301–308Google Scholar
  39. Hastings G (2015) Vibrational spectroscopy of photosystem I. Biochim Biophys Acta Bioenerg 1847:55–68CrossRefGoogle Scholar
  40. Hermes S, Bremm O, Garczarek F, Derrien V, Liebisch P, Loja P, Sebban P, Gerwert K, Haumann M (2006a) A time-resolved iron-specific X-ray absorption experiment yields no evidence for an Fe2+ → Fe3+ transition during QA– → QB electron transfer in the photosynthetic reaction center. Biochemistry 45:353–359PubMedCrossRefGoogle Scholar
  41. Hermes S, Stachnik JM, Onidas D, Remy A, Hofmann E, Gerwert K (2006b) Proton uptake in the reaction center mutant L210DN from Rhodobacter sphaeroides via protonated water molecules. Biochemistry 45:13741–13749PubMedCrossRefGoogle Scholar
  42. Hienerwadel R (1993) Ladungstranportvorgänge in photosynthetischen Reaktionzentren, Ph.D. thesis, Faculty of Chemistry, University of Freiburg, GermanyGoogle Scholar
  43. Hienerwadel R, Kreutz W, Mäntele W (1987), Infrared spectroscopy of the photosystem II—water-splitting complex. In: Schmid ED, Schneider FW, Siebert F (eds) Spectroscopy of biological molecules: new advances, proceedings of 2nd European Conference on the spectroscopy of biological molecules, Freiburg, West Germany, Wiley, Chichester. pp 305–308Google Scholar
  44. Hienerwadel R, Nabedryk E, Breton J, Mäntele W (1992a) Time-resolved infrared and static FTIR studies on QA → QB electron transfer in Rhodopseudomonas viridis reaction centers. In: Breton J, Verméglio A (eds) The Photosynthetic bacterial reaction center II. Plenum Press, New York, pp 163–172CrossRefGoogle Scholar
  45. Hienerwadel R, Thibodeau D, Lenz F, Nabedryk E, Breton J, Kreutz W, Mäntele W (1992b) Time-resolved infrared spectroscopy of electron transfer in bacterial photosynthetic reaction centers: dynamics of binding and interaction upon QA and QB reduction. Biochemistry 31:5799–5808PubMedCrossRefGoogle Scholar
  46. Hienerwadel R, Grzybek S, Fogel C, Kreutz W, Okamura MY, Paddock ML, Breton J, Nabedryk E, Mäntele W (1995) Protonation of Glu L212 following QB formation in the photosynthetic reaction center of Rhodobacter sphaeroides: evidence from time-resolved infrared spectroscopy. Biochemistry 34:2832–2843PubMedCrossRefGoogle Scholar
  47. Hillier W, Babcock GT (2001) S-state dependent Fourier transform infrared difference spectra for the Photosystem II oxygen evolving complex. Biochemistry 40:1503–1509PubMedCrossRefGoogle Scholar
  48. Iwata T, Paddock ML, Okamura MY, Kandori H (2009) Identification of FTIR bands due to internal water molecules around the quinone binding sites in the reaction center from Rhodobacter sphaeroides. Biochemistry 48:1220–1229PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jörger M, Simon A, Zachmann G (2015) The reinvention of interleaved time-resolved FT-IR spectroscopy. Book of abstract 8th International conference on advanced vibrational spectroscopy (ICAVS-8), Vienna, Austria, July 12–17, 2015. See also: Bruker GmbH, Application note # AN132 Interleaved time-resolved FT-IR spectroscopyGoogle Scholar
  50. Kennis JT, Groot ML (2007) Ultrafast spectroscopy of biological photoreceptors. Curr Opin Struct Biol 17:623–630PubMedCrossRefGoogle Scholar
  51. Kim S, Barry BA (1998) Vibrational spectrum associated with the reduction of tyrosyl radical D· in Photosystem II: a comparative biochemical and kinetic study. Biochemistry 37:13882–13892PubMedCrossRefGoogle Scholar
  52. Kim S, Ayala I, Steenhuis JJ, Gonzalez ET, Barry BA (1998) Infrared spectroscopic identification of the C–O stretching vibration associated with the tyrosyl Z· and D· radicals in photosystem II. Biochim Biophys Acta Bioenerg 1364:337–360CrossRefGoogle Scholar
  53. Kimura Y, Ishii A, Yamanari T, Ono T (2005) Water-sensitive low-frequency vibrations of reaction intermediated during S-state cycling in photosynthetic water oxidation. Biochemistry 44:7613–7622PubMedCrossRefGoogle Scholar
  54. Kish E, Mendes Pinto MM, Bovi D, Basire M, Guidoni L, Vuilleumier R, Robert B, Spezia R, Mezzetti A (2014) Fermi resonance as a tool for probing peridinin environment. J Phys Chem B 118:5873–5881PubMedCrossRefGoogle Scholar
  55. Kötting C, Gerwert K (2005) Protein in action monitored by time-resolved FTIR spectroscopy. ChemPhysChem 6:881–888PubMedCrossRefGoogle Scholar
  56. Krassen H, Schwarze A, Friedrich B, Ataka K, Lenz O, Heberle J (2009) Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 3:4055–4061PubMedCrossRefGoogle Scholar
  57. Lórenz-Fonfría VA, Schultz BJ, Resler T, Schlesinger R, Bamann C, Bamberg E, Heberle J (2015) Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy. J Am Chem Soc 137:1850–1861PubMedCrossRefGoogle Scholar
  58. Makita H, Hastings G (2015) Directionality of electron transfer in cyanobacterial photosystem I at 298 and 77K. FEBS Lett 589:1412–1417PubMedCrossRefGoogle Scholar
  59. Makita H, Hastings G (2016a) Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 site. Data Brief 7:1463–1468PubMedPubMedCentralCrossRefGoogle Scholar
  60. Makita H, Hastings G (2016b) Modeling electron transfer in photosystem I. Biochim Biophys Acta Bioenerg 1857:723–733CrossRefGoogle Scholar
  61. Makita H, Zhao N, Hastings G (2015) Time-resolved visible and infrared difference spectroscopy for the study of photosystem I with different quinones incorporated into the A1 binding site. Biochim Biophys Acta Bioenerg 1847:343–354CrossRefGoogle Scholar
  62. Malferrari M, Venturoli G, Francia F, Mezzetti A (2012) A new method for D2O/H2O exchange in infrared spectroscopy of proteins. J Spectrosc 27:337–342CrossRefGoogle Scholar
  63. Malferrari M, Mezzetti A, Francia F, Venturoli G (2013) Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy. Biochim Biophys Acta Bioenerg 1827:328–339CrossRefGoogle Scholar
  64. Malferrari M, Francia F, Venturoli G (2015a) Retardation of protein dynamics by trehalose in dehydrated systems of photosynthetic reaction centers. Insights from electron transfer and thermal denaturation kinetics. J Phys Chem B 119:13600–13618PubMedCrossRefGoogle Scholar
  65. Malferrari M, Turina P, Francia F, Mezzetti A, Leibl W, Venturoli G (2015b) Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy. Photochem Photobiol Sci 14:238–251PubMedCrossRefGoogle Scholar
  66. Malferrari M, Francia F, Mezzetti A, Venturoli G (2016) Kinetic effects in dehydration, rehydration, and isotopic exchange of bacterial photosynthetic reaction centers. Biomed Spectrosc Imaging 5:185–196CrossRefGoogle Scholar
  67. Mäntele W (1993) Reaction-induced infrared difference spectroscopy for the study of protein function and reaction mechanisms. Trends Biochem Sci 18:197–202PubMedCrossRefGoogle Scholar
  68. Mäntele W (1995) Infrared vibrational spectroscopy of reaction centers. In: Madigan MT, Bauer CE, Blankenship RE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Berlin, pp 627–647Google Scholar
  69. Mäntele W (1996) Infrared and Fourier transform infrared spectroscopy. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 137–160Google Scholar
  70. Mäntele W, Hienerwadel R, Lenz F, Riedel WJ, Grisar R, Tacke M (1991) Application of tunable infrared diode lasers for the study of biochemical reactions: time-resolved vibrational spectroscopy of intermediates in the primary processes of photosynthesis. Spectroscopy 6:25–30Google Scholar
  71. Marcelli A, Innocenzi P, Malfatti L, Newton MA, Rau JV, Ritter E, Schade U, Xu W (2012) IR and X-ray time-resolved simultaneous experiments: an opportunity to investigate the dynamics of complex systems and non-equilibrium phenomena using third-generation synchrotron radiation sources. J Synchrotron Radiat 19:892–904PubMedCrossRefGoogle Scholar
  72. Masutani K (2002) Time-resolved mid-infrared spectrometry using an asynchronous Fourier transform infrared spectrometer. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 655–665Google Scholar
  73. Mezzetti A (2010) Rapid-scan FTIR difference spectroscopy applied to ubiquinone reduction in photosynthetic reaction centers: ole of redox mediators. Spectrosc Int J 24:79–87CrossRefGoogle Scholar
  74. Mezzetti A (2015) Light-induced infrared difference spectroscopy in the investigation of light harvesting complexes. Molecules 20:12229–12249PubMedCrossRefGoogle Scholar
  75. Mezzetti A, Leibl W (2005) Investigation of ubiquinol formation in isolated photosynthetic reaction centers by rapid-scan Fourier transform IR spectroscopy. Eur Biophys J 34:921–936PubMedCrossRefGoogle Scholar
  76. Mezzetti A, Leibl W (2008) Proton and electron transfer in wild-type and mutant reaction centers from Rhodobacter sphaeroides followed by rapid-scan FTIR spectroscopy. Vibrat Spectrosc 48:126–134CrossRefGoogle Scholar
  77. Mezzetti A, Spezia R (2008) Time-resolved step scan FTIR spectroscopy and DFT investigation on triplet formation in peridinin-chlorophyll-a-protein from Amphidinium carterae at low temperature. Spectrosc Int J 22:235–250CrossRefGoogle Scholar
  78. Mezzetti A, Nabedryk E, Breton J, Okamura MY, Paddock ML, Giacometti G, Leibl W (2002) Rapid-scan Fourier transform infrared spectroscopy shows coupling of Glu-L212 protonation and electron transfer to QB in Rhodobacter sphaeroides reaction centers. Biochim Biophys Acta Bioenerg 1553:320–330CrossRefGoogle Scholar
  79. Mezzetti A, Leibl W, Breton J, Nabedryk E (2003a) Photoreduction of the quinone pool in the bacterialphotosynthetic membrane: identification of infrared marker bands for quinol formation. FEBS Lett 537:161–165PubMedCrossRefGoogle Scholar
  80. Mezzetti A, Seo D, Leibl W, Sakurai H, Breton J (2003b) Time-resolved step-scan FTIR investigation on the primary donor of the reaction center from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 75:161–169PubMedCrossRefGoogle Scholar
  81. Mezzetti A, Blanchet L, de Juan A, Leibl W, Ruckebusch C (2011) Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Anal Bioanal Chem 399:1999–2014PubMedCrossRefGoogle Scholar
  82. Mezzetti A, Kish E, Robert B, Spezia R (2015) Assignment of IR bands of isolated and protein-bound peridinin in its fundamental and triplet state by static FTIR, time-resolved step-scan FTIR and DFT calculations. J Mol Struct 1090:58–64CrossRefGoogle Scholar
  83. Morita EH, Hayashi H, Tasumi M (1993) Temperature dependence of the light-induced infrared difference spectra of chromatophores and reaction centers from photosynthetic bacteria. Biochim Biophys Acta Bioenerg 1142:146–154CrossRefGoogle Scholar
  84. Nabedryk E (1996) Light-induced Fourier transform infrared difference spectroscopy of the primary electron donor in photosynthetic reaction centers. In: Chapman D, Mantsch HH (eds) Infrared spectroscopy of biomolecules. Wiley, New York, pp 39–81Google Scholar
  85. Nabedryk E, Breton J (2008) Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: a perspective from FTIR difference spectroscopy. Biochim Biophys Acta Bioenerg 1777:1229–1248CrossRefGoogle Scholar
  86. Nabedryk E, Breton J, Okamura MY, Paddock ML (2001) Simultaneous replacement of Asp-L210 and Asp-M17 with Asn increases proton uptake by Glu-L212 upon first electron transfer to QB in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:13826–13832PubMedCrossRefGoogle Scholar
  87. Naumann RL, Geiss AF, Steininger C, Knoll W (2016) Biomimetic membranes for multi-redox center proteins. Int J Mol Sci 17:E330PubMedCrossRefGoogle Scholar
  88. Nedelkovski V, Schwaighofer A, Wraight CA, Nowak C, Naumann RLC (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) of light-activated photosynthetic reaction centers from Rhodobacter sphaeroides reconstituted in a biomimetic membrane system. J Phys Chem C 117:16357–16363CrossRefGoogle Scholar
  89. Noguchi T (2010) Fourier transform infrared spectroscopy of special pair bacteriochlorophylls in homodimeric reaction centers of heliobacteria and green sulfur bacteria. Photosynth Res 104:321–331PubMedCrossRefGoogle Scholar
  90. Noguchi T (2015) Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim Biophys Acta Bioenerg 1847:35–45CrossRefGoogle Scholar
  91. Noguchi T, Berthomieu C (2005) Molecular analysis by vibrational spectroscopy. In: Wydrzinski T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, NEw York, pp 367–387Google Scholar
  92. Noguchi T, Sugiura M (2001) Flash-induced Fourier transform infrared detection of the structural changes during the S-state cycle of the oxygen-evolving complex in photosystem II. Biochemistry 40:1497–1502PubMedCrossRefGoogle Scholar
  93. Noguchi T, Tomo T, Kato C (2001) Triplet formation on a monomeric chlorophyll in the photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40:2176–2185PubMedCrossRefGoogle Scholar
  94. Noguchi T, Suzuki H, Tsuno M, Sugiura M, Kato C (2012) Time-resolved infrared detection of the proton and protein dynamics during photosynthetic oxygen evolution. Biochemistry 51:3205–3214PubMedCrossRefGoogle Scholar
  95. Oda I, Iwaki M, Fujita D, Tsutsui Y, Ishizaka S, Dewa M, Nango M, Kajino T, Fukushima Y, Itoh S (2010) Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores. Langmuir 26:13399–13406PubMedCrossRefGoogle Scholar
  96. Okamura MY, Paddock ML, Graige MS, Feher G (2000) Proton and electron transfer in bacterial reaction centers. Biochim Biophys Acta Bioenerg 1458:148–163CrossRefGoogle Scholar
  97. Onidas D, Stachnik JM, Brucker S, Krätzig S, Gerwert K (2010) Histidine is involved in coupling proton uptake to electron transfer in photosynthetic proteins. Eur J Cell Biol 89:983–989PubMedCrossRefGoogle Scholar
  98. Onoda K, Mino H, Inoue Y, Noguchi T (2000) An FTIR study on the structure of the oxygen-evolving Mn-cluster of Photosystem II in different spin forms of the S2 state. Photosynth Res 63:47–57PubMedCrossRefGoogle Scholar
  99. Paddock ML, Adelroth P, Chang C, Abresch EC, Feher G, Okamura MY (2001) Identification of the proton pathway in bacterial reaction centers: cooperation between Asp-M17 and Asp-L210 facilitates proton transfer to the secondary quinone (QB). Biochemistry 40:6893–6902PubMedCrossRefGoogle Scholar
  100. Parameswaran S, Wang R, Hastings G (2008) Calculation of the vibrational properties of chlorophyll a in solution. J Phys Chem B 112:14056–14062PubMedCrossRefGoogle Scholar
  101. Quaroni L, Zlateva T (2011) Infrared spectromicroscopy of biochemistry in functional single cells. Analyst 136:3219–3232PubMedCrossRefGoogle Scholar
  102. Radu I, Schleeger M, Bolwien C, Heberle J (2009) Time-resolved methods in biophysics. 10. Time-resolved FT-IR difference spectroscopy and the application to membrane proteins. Photochem Photobiol Sci 8:1517–1528PubMedCrossRefGoogle Scholar
  103. Radu I, Schleeger M, Nack M, Heberle J (2011) Time-resolved FT-IR spectroscopy of membrane proteins. Aust J Chem 64:9–15CrossRefGoogle Scholar
  104. Remy A, Gerwert K (2003) Coupling of light-induced electron transfer to proton uptake in photosynthesis. Nat Struct Biol 10:637–644PubMedCrossRefGoogle Scholar
  105. Ritter E, Puskar L, Bartl F, Aziz EF, Hegemann P, Schade U (2015) Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin. Front Mol Biosci 2:38PubMedPubMedCentralCrossRefGoogle Scholar
  106. Rödig C, Siebert F (1999) Errors and artifacts in time-resolved step-scan FT-IR spectroscopy. Appl Spectrosc 53:893–901CrossRefGoogle Scholar
  107. Rödig C, Siebert F (2002) Instrumental aspects of time-resolved spectra generated using step-scan interferometers. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 641–654Google Scholar
  108. Rödig C, Georg H, Siebert F, Rousso I, Sheves M (1999) Temperature effects of excitation laser pulses during step-scan FT-IR experiments. Laser Chem 19:169–172CrossRefGoogle Scholar
  109. Rogl H, Kühlbrandt W, Barth A (2003) Light-induced changes in the chemical bond structure of light-harvesting complex II probed by FTIR spectroscopy. Biochemistry 42:10223–10228PubMedCrossRefGoogle Scholar
  110. Schade U, Ritter E, Hegemann P, Aziz EF, Hofmann KP (2014) Concept for a single-shot mid-infrared spectrometer using synchrotron radiation. Vib Spectrosc 75:190–195CrossRefGoogle Scholar
  111. Schleeger M, Wagner C, Vellekoop MJ, Lendl B, Heberle J (2009) Time-resolved flow-flash FT-IR difference spectroscopy: the kinetics of CO photodissociation from myoglobin revisited. Anal Bioanal Chem 394:1869–1877PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shinkarev VP, Wraight CA (1997) The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles. Biophys J 72:2304–2319PubMedPubMedCentralCrossRefGoogle Scholar
  113. Siebert F, Mäntele W, Kreutz W (1980) Flash-induced kinetic infrared spectroscopy applied to biochemical systems. Biophys Struct Mech 6:139–146PubMedCrossRefGoogle Scholar
  114. Smith GD, Palmer RA (2002) Fast time-resolved mid-infrared spectroscopy using an interferometer. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol 1. Wiley, Chirchester, pp 625–640Google Scholar
  115. Sturgis J, Robert B, Goormaghtigh E (1998) Transmembrane helix stability: the effect of helix-helix interactions studied by Fourier transform infrared spectroscopy. Biophys J 74:988–994PubMedPubMedCentralCrossRefGoogle Scholar
  116. Süss B (2011) Entwicklung eines step-scan FTIR experiments zur Untersuchung der lichtinduzierten Wasserspaltung der oxygenen Photosynthese, Ph.D. thesis, Free Unversity of BerlinGoogle Scholar
  117. Süss B, Ringleb F, Heberle J (2016) New ultrarapid-scanning interferometer for FT-IR spectroscopy with microsecond time-resolution Rev. Sci Instrum 87:063113CrossRefGoogle Scholar
  118. Thibodeau DL, Nabedryk E, Hienerwadel R, Lenz F, Mäntele W, Breton J (1990) Time-resolved FTIR spectroscopy of quinones in Rb. sphaeroides reaction centers. Biochim Biophys Acta Bioenerg 1020:253–259CrossRefGoogle Scholar
  119. Thibodeau DL, Nabedryk E, Hienerwadel R, Lenz F, Mäntele W, Breton J (1992) Time-resolved FTIR difference spectroscopy of photosynthetic bacterial reaction centers, In: Takahashi H (ed) Time-resolved vibrational spectroscopy V, Springer Proceedings in physics 68, Springer, pp 79–82Google Scholar
  120. Tiede DM, Vashishta AC, Gunner MR (1993) Electron-transfer kinetics and electrostatic properties of the Rhodobacter sphaeroides reaction center and soluble c-cytochromes. Biochemistry 32:4515–4531PubMedCrossRefGoogle Scholar
  121. Uhmann W, Becker A, Taran C, Siebert F (1991) Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer. Appl Spectrosc 45:390–397CrossRefGoogle Scholar
  122. Venturoli G, Mallardi A, Mathis P (1993) Electron transfer from cytochrome c 2 to the primary donor of Rhodobacter sphaeroides reaction centers. A temperature dependence study. Biochemystry 32:13245–13253CrossRefGoogle Scholar
  123. Wilson A, Gwizdala M, Mezzetti A, Alexandre M, Kerfeld CA, Kirilovsky D (2012) The essential role of the N-terminal domain of the orange carotenoid protein in cyanobacterial photoprotection: importance of a positive charge for phycobilisome binding. Plant Cell 24:1972–1983PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wraight CA, Gunner MR (2009) The acceptor quinones of purple photosynthetic bacteria—structure and spectroscopy. In: Thurnauer MC, Beatty JT, Hunter CN (eds) The purple phototropic bacteria. Springer, New York, pp 379–405CrossRefGoogle Scholar
  125. Yuzawa T, Kato C, George MW, Hamaguchi H (1994) Nanosecond time-resolved infrared spectroscopy with a dispersive scanning spectrometer. Appl Spectrosc 48:684–690CrossRefGoogle Scholar
  126. Zhang H, Razeghifard MR, Fischer G, Wydrzinski T (1997) A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in Photosystem II. Biochemistry 36:11762–11768PubMedCrossRefGoogle Scholar
  127. Zhang H, Fischer G, Wydrzinski T (1998) Room-temperature vibrational difference spectrum for S2QB/S1QB of Photosystem II determined by time-resolved Fourier transform infrared spectroscopy. Biochemistry 37:5511–5517PubMedCrossRefGoogle Scholar
  128. Zscherp C, Schlesinger R, Tittor J, Oesterhelt D, Heberle J (1999) In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 96:5498–5503PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de SurfacesParisFrance
  2. 2.Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-SudUniversité Paris-SaclayGif-sur-YvetteFrance

Personalised recommendations