Skip to main content
Log in

Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Chlorosomes are large and efficient light-harvesting organelles in green photosynthetic bacteria, and they characteristically contain large numbers of bacteriochlorophyll c, d, or e molecules. Self-aggregated bacteriochlorophyll pigments are surrounded by a monolayer envelope membrane comprised of glycolipids and Csm proteins. Here, we analyzed glycolipid compositions of chlorosomes from the green sulfur bacterium Chlorobaculum tepidum mutants lacking one, two, or three Csm proteins by HPLC equipped with an evaporative light-scattering detector. The ratio of monogalactosyldiacylglyceride (MGDG) to rhamnosylgalactosyldiacylglyceride (RGDG) was smaller in chlorosomes from mutants lacking two or three proteins in CsmC/D/H motif family than in chlorosomes from the wild-type, whereas chlorosomes lacking CsmIJ showed relatively less RGDG than MGDG. The results suggest that the CsmC, CsmD, CsmH, and other chlorosome proteins are involved in organizing MGDG and RGDG and thereby affect the size and shape of the chlorosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll

ELSD:

Evaporative light-scattering detector

GSB:

Green sulfur bacteria

MGDG:

Monogalactosyldiacylglyceride

RGDG:

Rhamnosylgalactosyldiacylglyceride

References

  • Blankenship RE, Matsuura K (2003) Antenna complexes in green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 195–217

    Chapter  Google Scholar 

  • Bryant DA, Vassilieva EV, Frigaard NU, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents: Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA, Garcia Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigaard NU, Bryant DA (2006) Chlorosomes: antenna organelles in photosynthetic green bacteria. In: Shively JM (ed) Complex structures in prokaryotes, vol 2. Springer, Berlin, pp 79–114

    Chapter  Google Scholar 

  • Frigaard NU, Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1412:108–117

    Article  CAS  PubMed  Google Scholar 

  • Frigaard NU, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigaard NU, Li H, Milks KJ, Bryant DA (2004) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frigaard NU, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Gomez Maqueo Chew A, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJ (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Romberger SP, Oostergetel GT, Boekema EJ, Golbeck JH, Bryant DA (2011) Ultrastructural analysis and identification of envelope proteins of “Candidatus Chloracidobacterium thermophilum” chlorosomes. J Bacteriol 193:6701–6711

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia Costas AM, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA (2012) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanada S (2003) Filamentous anoxygenic phototrophs in hot springs. Microbes Environ 18:51–61

    Article  Google Scholar 

  • Holo H, Broch-Due M, Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143:94–99

    Article  CAS  Google Scholar 

  • Johnson TW, Li H, Frigaard NU, Golbeck JH, Bryant DA (2013) [2Fe-2S] proteins in chlorosomes: redox properties of CsmI, CsmJ, and CsmX of the chlorosome envelope of Chlorobaculum tepidum. Biochemistry 52:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bryant DA (2009) Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 191:7109–7120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Frigaard NU, Bryant DA (2006) Molecular contacts for chlorosome envelope proteins revealed by cross-linking studies with chlorosomes from Chlorobium tepidum. Biochemistry 45:9095–9103

    Article  CAS  PubMed  Google Scholar 

  • Li H, Frigaard NU, Bryant DA (2013) [2Fe-2S] proteins in chlorosomes: CsmI and CsmJ participate in light-dependent control of energy transfer in chlorosomes of Chlorobaculum tepidum. Biochemistry 52:1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Yoshitomi T, Harada J, Tamiaki H (2011) Temperature- and time-dependent changes in the structure and composition of glycolipids during the growth of the green sulfur photosynthetic bacterium Chlorobaculum tepidum. Biochemistry 50:4504–4512

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Harada J, Yoshitomi T, Tamiaki H (2013a) A variety of glycolipids in green photosynthetic bacteria. Photosynth Res 114:179–188

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Tsukatani Y, Harada J, Takasaki S, Yoshitomi T, Tamiaki H (2013b) Cyclopropane-ring formation in the acyl groups of chlorosome glycolipids is crucial for acid resistance of green bacterial antenna systems. Bioorg Med Chem 21:3689–3694

    Article  CAS  PubMed  Google Scholar 

  • Montaño GA, Wu HM, Lin S, Brune DC, Blankenship RE (2003) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251

    Article  PubMed  Google Scholar 

  • Pedersen MØ, Linnanto J, Frigaard NU, Nielsen NC, Miller M (2010) A model of the protein-pigment baseplate complex in chlorosomes of photosynthetic green bacteria. Photosynth Res 104:233–243

    Article  CAS  PubMed  Google Scholar 

  • Sørensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196

    Article  PubMed  Google Scholar 

  • Tamiaki H (1996) Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria. Coord Chem Rev 148:183–197

    Article  CAS  Google Scholar 

  • Tamiaki H, Amakawa M, Shimono Y, Tanikaga R, Holzwarth AR, Schaffner K (1996) Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem Photobiol 63:92–99

    Article  CAS  Google Scholar 

  • Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard NU, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH and CsmX. Biochemistry 41:4358–4370

    Article  CAS  PubMed  Google Scholar 

  • Yoshitomi T, Mizoguchi T, Tamiaki H (2011) Characterization of glycolipids in light-harvesting chlorosomes from the green photosynthetic bacterium Chlorobium tepidum. Bull Chem Soc Jpn 84:395–402

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants-in-Aid for Scientific Research (A) (No. 22245030 to H.T.), for Scientific Research (C) (No. 24550065 to T.M.), for Young Scientists (B) (No. 26840099 to Y.T.), and for Scientific Research on Innovative Areas (“Artificial Photosynthesis,” No. 24107002 to H.T.) from the Japan Society for the Promotion of Science (JSPS). This work was also supported by the PRESTO (Precursory Research for Embryonic Science and Technology) program from the Japan Science and Technology Agency (JST). Work in the laboratory of D. A. B. was supported by grant DE-FG02-94ER20137 from the U. S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Tsukatani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukatani, Y., Mizoguchi, T., Thweatt, J. et al. Glycolipid analyses of light-harvesting chlorosomes from envelope protein mutants of Chlorobaculum tepidum . Photosynth Res 128, 235–241 (2016). https://doi.org/10.1007/s11120-016-0228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-016-0228-z

Keywords

Navigation