Skip to main content
Log in

Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We synthesized manganese oxides supported on gold nanoparticles (diameter <100 nm) by the reaction of KMnO4 with gold nanoparticles under hydrothermal conditions. In this green method Mn oxide is deposited on the gold nanoparticles. The compounds were characterized by scanning electron microscopy, energy-dispersive spectrometry, high-resolution transmission electron microscopy, X-ray diffraction, UV–Vis spectroscopy, Fourier transform infrared spectroscopy, and atomic absorption spectroscopy. In the next step, the water-oxidizing activities of these compounds in the presence of cerium(IV) ammonium nitrate as a non-oxo transfer oxidant were studied. The results show that these compounds are good catalysts toward water oxidation with a turnover frequency of 1.0 ± 0.1 (mmol O2/(mol Mn·s)). A comparison with other previously reported Mn oxides and important factors influencing the water-oxidizing activities of Mn oxides is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  • Ananyev G, Dismukes GC (2005) How fast can Photosystem II split water? Kinetic performance at high and low frequencies. Photosynth Res 84:355–365

    Article  CAS  PubMed  Google Scholar 

  • Bockris JOM (2002) The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment. Int J Hydrog Energy 27:731–740

    Article  CAS  Google Scholar 

  • Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47:8973–8975

    Article  CAS  Google Scholar 

  • Cady CW, Crabtree RH, Brudvig GW (2008) Functional models for the oxygen-evolving complex of photosystem II. Coord Chem Rev 252:444–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dismukes GC, Brimblecombe R, Felton GAN, Pryadun RS, Sheats JE, Spiccia L, Swiegers GF (2009) Development of bioinspired Mn4O4−cubane water oxidation catalysts: lessons from photosynthesis. Acc Chem Res 42:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • El-Deab MS, Awad MI, Mohammad AM, Ohsaka T (2007) Enhanced water electrolysis: electrocatalytic generation of oxygen gas at manganese oxide nanorods modified electrodes. Electrochem Commun 9:2082–2087

    Article  CAS  Google Scholar 

  • Glikman TS, Shcheglova IS (1968) Water oxidation by Mn oxide. Kinetikai Kataliz 9:461–480

    CAS  Google Scholar 

  • Gorlin Y, Chung CJ, Benck JD, Nordlund D, Seitz L, Weng TC, Sokaras D, Clemens BM, Jaramillo TF (2014) Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation. J Am Chem Soc 136:4920–4926

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 84:2795–2806

    Article  CAS  Google Scholar 

  • Hocking RK, Brimblecombe R, Chang L-Y, Singh A, Cheah MH, Glover C, Casey WH, Spiccia L (2011) Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat Chem 3:461–466

    CAS  PubMed  Google Scholar 

  • Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136:6002–6010

    Article  CAS  PubMed  Google Scholar 

  • Iyer Y, Del-Pilar J, Kithongo King’ondu C, Kissel E, Fabian Garces H, Huang H, El-Sawy AM, Dutta PK, Suib SL (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116:6474–6483

    Article  CAS  Google Scholar 

  • Jiao F, Frei H (2010a) Nanostructured manganese oxide clusters supported on mesoporous silicaas efficient oxygen-evolving catalysts. Chem Commun 46:2920–2922

    Article  CAS  Google Scholar 

  • Jiao F, Frei H (2010b) Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ Sci 3:1018–1027

  • Khan M, Suljoti E, Singh A, Bonke SA, Brandenburg T, Atak K, Golnak R, Spiccia L, Aziz F (2014) Electronic structural insights into efficient MnOx catalysts. J Mater Chem A 2:18199–18203

    Article  CAS  Google Scholar 

  • Kuo CH, Li W, Pahalagedar LAM, El-Sawy AM, Kriz D, Genz N, Guild C, Ressler T, Suib SL, He J (2014) Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions. Angew Chem Int Ed 54:2345–2350

    Article  Google Scholar 

  • Meng Y, Song W, Huang H, Ren Z, Chen S-Y, Suib SL (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464

    Article  CAS  PubMed  Google Scholar 

  • Mohammad AM, Awad MI, El-Deab MS, Okajima T, Ohsaka T (2008) Electrocatalysis by nanoparticles: optimization of the loading level and operating pH for the oxygen evolution at crystallographically oriented manganese oxide nanorods modified electrodes. Electrochim Acta 53:4351–4358

    Article  CAS  Google Scholar 

  • Morita M, Iwakura C, Tamura H (1977) The anodic characteristics of manganese dioxide electrodes prepared by thermal decomposition of manganese nitrate. Electrochim Acta 22:325–328

    Article  CAS  Google Scholar 

  • Najafpour MM (2011a) Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Trans 40:3793–3795

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM (2011b) A soluble form of nano-sized colloidal manganese(IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40:3805–3807

  • Najafpour MM, McKee V (2010) A dinuclear manganese(II) complex with 2,6-pyridinedicarboxylate: preparation, crystal structure and oxygen evolution activity in the presence of oxone. Catal Commun 11:1032–1035

    Article  CAS  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A (2012) Amorphous manganese oxide-coated montmorillonite as an efficient catalyst for water oxidation. New J Chem 36:2514–2519

    Article  CAS  Google Scholar 

  • Najafpour MM, Pashaei B (2012) Nanoscale manganese oxide within Faujasite zeolite as an efficient and biomimetic water oxidizing catalyst. Dalton Trans 41:10156–10160

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Sedigh DJ (2013) Water oxidation by manganese oxides, a new step towards a complete picture: simplicity is the ultimate sophistication. Dalton Trans 42:12173–12178

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4·xH2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49:2233–2237

    Article  CAS  Google Scholar 

  • Najafpour MM, Kozlevčar B, McKeeV Jagličić Z, Jagodič M (2011a) The first pentanuclear heterobimetallic coordination cation with CeIII, CeIV and MnII. Inorg Chem Commun 14:125–127

  • Najafpour MM, Nayeri S, Pashaei B (2011b) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40:9374–9378

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Nayeri S, Pashaei B (2012a) Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation. Dalton Trans 41:4799–4805

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Pashaei B, Nayeri S (2012b) Nano-sized layered aluminium or zinc–manganese oxides as efficient water oxidizing catalysts. Dalton Trans 41:7134–7140

  • Najafpour MM, Rahimi F, Amini M, Nayeri S, Bagherzadeh M (2012c) A very simple method to synthesize nano-sized manganese oxide: an efficient catalyst for water oxidation and epoxidation of olefins. Dalton Trans 41:11026–11031

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Rahimi F, Aro E-M, Lee C-H, Allakhverdiev SI (2012d) Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J Royal Soc Inter 9:2383–2395

    Article  CAS  Google Scholar 

  • Najafpour MM, Amouzadeh Tabrizi M, Haghighi B, Govindjee (2012e) A manganese oxide with phenol groups as a promising structural model for water oxidizing complex in Photosystem II: a ‘golden fish’. Dalton Trans 41:3906–3910

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Haghighi B, Zarei Ghobadi M, Jafarian Sedigh D (2013a) Nanolayered manganese oxide/poly(4-vinylpyridine) as a biomimetic and very efficient water oxidizing catalyst: toward an artificial enzyme in artificial photosynthesis. Chem Commun 49:8824–8826

    Article  CAS  Google Scholar 

  • Najafpour MM, Haghighi B, Sedigh DJ, Ghobadi MZ (2013b) Conversions of Mn oxides to nanolayered Mn oxide in electrochemical water oxidation at near neutral pH, all to a better catalyst: catalyst evolution. Dalton Trans 42:16683–16686

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Jafarian Sedigh D, Pashaeia B, Nayeri S (2013c) Water oxidation by nano-layered manganese oxides in the presence of cerium(IV) ammonium nitrate: important factors and a proposed self-repair mechanism. New J Chem 37:2448–2459

    Article  CAS  Google Scholar 

  • Najafpour MM, Kompany-Zareh M, Zahraei A, Jafarian Sedigh D, Jaccard H, Khoshkam M, Britt RD, Casey W (2013d) Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Trans 42:14603–14611

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Rahimi F, Jafarian Sedigh D, Carpentier R, Eaton-Rye JJ, Shen JR, Allakhverdiev SI (2013e) Gold or silver deposited on layered manganese oxide: a functional model for the water-oxidizing complex in photosystem II. Photosynth Res 117:423–429

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Nemati Moghaddam A, Dau H, Zaharieva I (2014a) Fragments of layered manganese oxide are the real water oxidation catalyst after transformation of molecular precursor on clay. J Am Chem Soc 136:7245–7248

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K (2014b) The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Trans 43:13122–13135

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI (2014c) Nanolayered manganese oxide/C60 composite: a good water-oxidizing catalyst for artificial photosynthetic systems. Dalton Trans 43:12058–12064

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Rahimi F, Fathollahzadeh M, Haghighi B, Holyńska B, Tomo T, Allakhverdiev SI (2014d) Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis. Dalton Trans 43:10866–10876

  • Najafpour MM, Abasi M, Tomo T, Allakhverdiev SI (2014e) Mn oxide/nanodiamond composite: a new water-oxidizing catalyst for water oxidation. RSC Adv 4:37613–37619

    Article  CAS  Google Scholar 

  • Najafpour MM, Abasi M, Hołyńska M (2014f) Nanolayered manganese oxides as water-oxidizing catalysts: the effects of Cu(II) and Ni(II) ions. RSC Adv 4:36017–36023

    Article  CAS  Google Scholar 

  • Najafpour MM, Khoshkam M, Jafarian Sedigh D, Zahraei A, Kompany-Zareh M (2015a) Self-healing for nanolayered manganese oxides in the presence of cerium (IV) ammonium nitrate: new findings. New J Chem 39:2547–2550. doi:10.1039/C4NJ02092H

    Article  CAS  Google Scholar 

  • Najafpour MM, Fekete M, Jafarian Sedigh D, Aro E-M, Carpentier R, Eaton-Rye JJ, Nishihara H, Shen J-R, Allakhverdiev SI, Spiccia L (2015b) Damage management in water-oxidizing catalysts: from Photosystem II to nano-sized metal oxides. ACS Catal 5:1499–1512

    Article  CAS  Google Scholar 

  • Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compounds, 6th edn. A Wiley-Interscience Publication, New York

    Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  PubMed  Google Scholar 

  • Okuno Y, Yonemitsu O, Chiba Y (1983) Facile preparation of platinum sols by sodium borohydride reduction and its evaluation in the photosensitized reduction of water to hydrogen. Chem Lett 12:893–896

    Article  Google Scholar 

  • Plieth WJ (1982) Electrochemical properties of small clusters of metal atoms and their role in surface enhanced raman scattering. J Phys Chem 86:3166–3170

    Article  CAS  Google Scholar 

  • Robinson DM, Go YB, Greenblatt M, Dismukes GC (2010) Water oxidation by λ-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. J Am Chem Soc 132:11467–11469

    Article  CAS  PubMed  Google Scholar 

  • Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 35:3494–3501

    Article  Google Scholar 

  • Shafirovich VY, Shilov AE (1979) Catalytic oxidation of water with the participation of manganese compounds in neutral and slightly acid media. Kinet Catal (USSR) (Engl Transl) (U S) 20:23–36

    Google Scholar 

  • Singh A, Spiccia L (2013) Water oxidation catalysts based on abundant 1st row transition metals. Coord Chem Rev 257:2607–2622

    Article  CAS  Google Scholar 

  • Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat Mater 11:550–557

    Article  CAS  PubMed  Google Scholar 

  • Takashima T, Hashimoto K, Nakamura R (2012) Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J Am Chem Soc 134:18153–18156

    Article  CAS  PubMed  Google Scholar 

  • Turner JA (1999) A realizable renewable energy future. Science 285:687–689

    Article  CAS  PubMed  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Yeo BS, Bell AT (2011) Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J Am Chem Soc 133:5587–5593

    Article  CAS  PubMed  Google Scholar 

  • Yeo BS, Bell AT (2012) In situ raman study of nickel oxide and gold-supported nickel oxide catalysts for the electrochemical evolution of oxygen. J Phys Chem C 116:8394–8400

    Article  CAS  Google Scholar 

  • Zhou F, Izgorodin A, Hocking RK, Armel V, Spiccia L, MacFarlane DR (2013) Improvement of catalytic water oxidation on MnO x films by heat treatment. ChemSusChem 6:643–651

Download references

Acknowledgments

MMN and SMH are grateful to the Institute for Advanced Studies in Basic Sciences and the National Elite Foundation for financial support. MH acknowledges Prof. Dr. S. Dehnen for generous support. This work was supported by Grant-in-Aids for Scientific Research from the Ministry of Education of Japan (24370025 and 26220801) to TT. SIA was supported by grants from the Russian Foundation for Basic Research (Nos: 14-04-01549, 14-04-92690) and by Molecular and Cell Biology Programs of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Najafpour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10749 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafpour, M.M., Hosseini, S.M., Hołyńska, M. et al. Manganese oxides supported on gold nanoparticles: new findings and current controversies for the role of gold. Photosynth Res 126, 477–487 (2015). https://doi.org/10.1007/s11120-015-0164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0164-3

Keywords

Navigation