Photosynthesis Research

, Volume 124, Issue 1, pp 77–86 | Cite as

How do surrounding environments influence the electronic and vibrational properties of spheroidene?

  • Noriyuki Tonouchi
  • Daisuke Kosumi
  • Mitsuru Sugisaki
  • Mamoru Nango
  • Hideki Hashimoto
Regular Paper


Absorption and Raman spectra of spheroidene dissolved in various organic solvents and bound to peripheral light-harvesting LH2 complexes from photosynthetic purple bacteria Rhodobacter (Rba.) sphaeroides 2.4.1 were measured. The results showed that the peak energies of absorption and C–C and C=C stretching Raman lines are linearly proportional to the polarizability of solvents, as has already been reported. When comparing these results with those measured on LH2 complexes, it was confirmed that spheroidene is surrounded by a media with high polarizability. However, the change in the spectral width of the Raman lines, which reflect vibrational decay time, cannot be explained simply by a similar dependence of solvent polarizability. The experimental results were analyzed using a potential theoretical model. Consequently, a systematic change in the Raman line widths in the ground state can be satisfactorily explained as a function of the viscosity of the surrounding media. Even when the absorption peaks appear at the same energy, the vibrational decay time of spheroidene in the LH2 complexes is approximately 15–20 % slower than that in organic solvents.


Carotenoid LH2 Raman spectroscopy Vibrational decay Polarizability Viscosity 



Carbon disulfide


Density functional theory


Half-width at half-maximum




Light-harvesting 2


Polymethyl methacrylate





This work was conducted with financial support from the Grant-in-aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology (Grants No. 22340085 and No. 26610133). HH thanks Scientific Research on Innovative Area “All Nippon Artificial Photosynthesis Project for Living Earth (AnApple)” (No. 24107002H) from the Japan Society for the Promotion of Science (JSPS) for financial support.


  1. Berg M (1998) Viscoelastic continuum model of nonpolar solvation. 1. Implications for multiple time scales in liquid dynamics. J Phys Chem A 102(1):17–30. doi: 10.1021/jp9722061 CrossRefGoogle Scholar
  2. Berg MA, Hubble HW (1998) A viscoelastic continuum model of non-polar solvation. II. Vibrational dephasing in moderate to high-viscosity liquids and glasses. Chem Phys 233(2–3):257–266. doi: 10.1016/s0301-0104(98)00065-2 CrossRefGoogle Scholar
  3. Boereboom JM, van Hemert MC, Neugebauer J (2011) The resonance Raman spectra of spheroidene revisited with a first-principles approach. ChemPhysChem 12(17):3157–3169. doi: 10.1002/cphc.201100545 CrossRefPubMedGoogle Scholar
  4. Buckup T, Motzkus M (2014) Multidimensional time-resolved spectroscopy of vibrational coherence in biopolyenes. Annu Rev Phys Chem 65(65):39–57. doi: 10.1146/annurev-physchem-040513-103619 CrossRefPubMedGoogle Scholar
  5. Burt JA, Zhao XH, McHale JL (2004) Inertial solvent dynamics and the analysis of spectral line shapes: temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent. J Chem Phys 120(9):4344–4354. doi: 10.1063/1.1644534 CrossRefPubMedGoogle Scholar
  6. Christensen RL, Galinato MGI, Chu EF, Howard JN, Broene RD, Frank HA (2008) Energies of low-lying excited states of linear polyenes. J Phys Chem A 112(49):12629–12636. doi: 10.1021/jp8060202 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Cogdell RJ, Durant I, Valentine J, Lindsay JG, Schmidt K (1983) The isolation and partial characterization of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila. Biochim Biophys Acta 722(3):427–435. doi: 10.1016/0005-2728(83)90058-0 CrossRefGoogle Scholar
  8. Dokter AM, van Hemert MC, In’t Velt CM, van der Hoef K, Lugtenburg J, Frank HA, Groenen EJJ (2002) Resonance Raman spectrum of all-trans-spheroidene. DFT analysis and isotope labeling. J Phys Chem A 106(41):9463–9469. doi: 10.1021/jp026164e CrossRefGoogle Scholar
  9. Englman R, Jortner J (1970) Energy gap law for radiationless transitions in large molecules. Mol Phys 18(2):145–164. doi: 10.1080/00268977000100171 CrossRefGoogle Scholar
  10. Evans MB, Cogdell RJ, Britton G (1988) Determination of the bacteriochlorophyll: carotenoid ratios of the B890 antenna complex of Rhodospirillum rubrum and the B800–850 complex of Rhodobacter sphaeroides. Biochim Biophys Acta 935(3):292–298. doi: 10.1016/0005-2728(88)90224-1 CrossRefGoogle Scholar
  11. Finkelstein IJ, McClain BL, Fayer MD (2004) Fifth-order contributions to ultrafast spectrally resolved vibrational echoes: heme-CO proteins. J Chem Phys 121(2):877–885. doi: 10.1063/1.1758940 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63(3):257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x CrossRefPubMedGoogle Scholar
  13. Frank HA, Chynwat V, Desamero RZB, Farhoosh R, Erickson J, Bautista J (1997) On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure Appl Chem 69(10):2117–2124. doi: 10.1351/pac199769102117 CrossRefGoogle Scholar
  14. Frank HA, Bautista JA, Josue J, Pendon Z, Hiller RG, Sharples FP, Gosztola D, Wasielewski MR (2000) Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B 104(18):4569–4577. doi: 10.1021/jp000079u CrossRefGoogle Scholar
  15. Frank HA, Josue JS, Bautista JA, van der Hoef I, Jansen FJ, Lugtenburg J, Wiederrecht G, Christensen RL (2002) Spectroscopic and photochemical properties of open-chain carotenoids. J Phys Chem B 106(8):2083–2092. doi: 10.1021/jp013321l CrossRefGoogle Scholar
  16. Fujii R, Onaka K, Kuki M, Koyama Y, Watanabe Y (1998) The 2Ag energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chem Phys Lett 288(5–6):847–853. doi: 10.1016/S0009-2614(98)00376-5 CrossRefGoogle Scholar
  17. Fujiwara M, Yamauchi K, Sugisaki M, Gall A, Robert B, Cogdell RJ, Hashimoto H (2008) Energy dissipation in the ground-state vibrational manifolds of β-carotene homologues: a sub-20-fs time-resolved transient grating spectroscopic study. Phys Rev B 77:205118. doi: 10.1103/PhysRevB.77.205118 CrossRefGoogle Scholar
  18. Hauer J, Buckup T, Motzkus M (2007) Pump-degenerate four wave mixing as a technique for analyzing structural and electronic evolution: multidimensional time-resolved dynamics near a conical intersection. J Phys Chem A 111(42):10517–10529. doi: 10.1021/jp073727j CrossRefPubMedGoogle Scholar
  19. Ikuta M, Yabushita A, Rondonuwu FS, Akahane J, Koyama Y, Kobayashi T (2006) The 1Bu+ → 3Ag → 1Bu → 2Ag internal conversion in carotenoids following the energy-gap law identified by 5 fs spectroscopy. Chem Phys Lett 422(1–3):95–99. doi: 10.1016/j.cplett.2006.02.042 CrossRefGoogle Scholar
  20. Kjaer AM, Kjaer NJ, Ulstrup J, Zakaraya MG (1989) Bandshape parameter dependence on temperature and solvent dynamics in absorption spectra and Raman excitation profiles of beta-carotene. Chem Phys Lett 157(5):447–456. doi: 10.1016/0009-2614(89)87279-3 CrossRefGoogle Scholar
  21. Kok P, Köhler J, Groenen EJJ, Gebhard R, van der Hoef I, Lugtenburg J, Hoff AJ, Farhoosh R, Frank HA (1994) Towards a vibrational analysis of spheroidene—resonance Raman spectroscopy of 13C-labeled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction center. Biochim Biophys Acta Bioenerg 1185(2):188–192. doi: 10.1016/0005-2728(94)90209-7 CrossRefGoogle Scholar
  22. Konradi J, Singh AK, Scaria AV, Materny A (2006) Selective spectral filtering of molecular modes of β-carotene in solution using optimal control in four-wave-mixing spectroscopy. J Raman Spectrosc 37(6):697–704. doi: 10.1002/jrs.1502 CrossRefGoogle Scholar
  23. Kosumi D, Yanagi K, Fujii R, Hashimoto H, Yoshizawa M (2006) Conjugation length dependence of relaxation kinetics in β-carotene homologs probed by femtosecond Kerr-gate fluorescence spectroscopy. Chem Phys Lett 425(1–3):66–70. doi: 10.1016/j.cplett.2006.05.023 CrossRefGoogle Scholar
  24. Kosumi D, Fujiwara M, Fujii R, Cogdell RJ, Hashimoto H, Yoshizawa M (2009a) The dependence of the ultrafast relaxation kinetics of the S2 and S1 states in beta-carotene homologs and lycopene on conjugation length studied by femtosecond time-resolved absorption and Kerr-gate fluorescence spectroscopies. J Chem Phys 130(21):214506. doi: 10.1063/1.3147008 CrossRefPubMedGoogle Scholar
  25. Kosumi D, Kusumoto T, Fujii R, Sugisaki M, Iinuma Y, Oka N, Takaesu Y, Taira T, Iha M, Frank HA, Hashimoto H (2009b) One- and two-photon pump-probe optical spectroscopic measurements reveal the S1 and intramolecular charge transfer states are distinct in fucoxanthin. Chem Phys Lett 483(1–3):95–100. doi: 10.1016/j.cplett.2009.10.077 CrossRefGoogle Scholar
  26. Koyama Y, Rondonuwu FS, Fujii R, Watanabe Y (2004) Light-harvesting function of carotenoids in photo-synthesis: the roles of the newly found 11Bu state. Biopolymers 74(1–2):2–18. doi: 10.1002/bip.20034 CrossRefPubMedGoogle Scholar
  27. Krueger BP, Scholes GD, Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102(27):5378–5386. doi: 10.1021/jp9811171 CrossRefGoogle Scholar
  28. Kuki M, Nagae H, Cogdell RJ, Shimada K, Koyama Y (1994) Solvent effect on spheroidene in nonpolar and polar solutions and the environment of spheroidene in the light-harvesting complexes of Rhodobacter sphaeroides 2.4.1 as revealed by the energy of the 1Ag1Bu+ absorption and the frequencies of the vibronically coupled C=C stretching Raman lines in the 1Ag and 21Ag states. Photochem Photobiol 59(1):116–124. doi: 10.1111/j.1751-1097.1994.tb05009.x CrossRefGoogle Scholar
  29. Kukura P, McCamant DW, Mathies RA (2004) Femtosecond time-resolved stimulated Raman spectroscopy of the S-2 (1B(u)(+)) excited state of beta-carotene. J Phys Chem A 108(28):5921–5925. doi: 10.1021/jp0482971 CrossRefPubMedCentralPubMedGoogle Scholar
  30. Landrum JT (2009) Carotenoids: physical, chemical, and biological functions and properties. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. Lee SA, Chan CK, Page JB, Walker CT (1986) Temperature-dependent resonance Raman profiles of β-carotene in carbon-disulfide. J Chem Phys 84(5):2497–2502. doi: 10.1063/1.450369 CrossRefGoogle Scholar
  32. Macernis M, Sulskus J, Malickaja S, Robert B, Valkunas L (2014) Resonance Raman spectra and electronic transitions in carotenoids: a density functional theory study. J Phys Chem A 118(10):1817–1825. doi: 10.1021/jp406449c CrossRefPubMedGoogle Scholar
  33. Macpherson AN, Gillbro T (1998) Solvent dependence of the ultrafast S2-S1 internal conversion rate of β-carotene. J Phys Chem A 102(26):5049–5058. doi: 10.1021/jp980979z CrossRefGoogle Scholar
  34. Macpherson AN, Arellano JB, Fraser NJ, Cogdell RJ, Gillbro T (2001) Efficient energy transfer from the carotenoid S2 state in a photosynthetic light-harvesting complex. Biophys J 80(2):923–930. doi: 10.1016/S0006-3495(01)76071-7 CrossRefPubMedCentralPubMedGoogle Scholar
  35. Maiuri M, Polli D, Brida D, Luer L, LaFountain AM, Fuciman M, Cogdell RJ, Frank HA, Cerullo G (2012) Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene. PCCP 14(18):6312–6319. doi: 10.1039/c2cp23585d CrossRefPubMedGoogle Scholar
  36. Marek MS, Buckup T, Motzkus M (2011) Direct observation of a dark state in lycopene using pump-DFWM. J Phys Chem B 115(25):8328–8337. doi: 10.1021/jp202753j CrossRefPubMedGoogle Scholar
  37. Marek MS, Buckup T, Southall J, Cogdell RJ, Motzkus M (2013) Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing. J Chem Phys 139(7):074202. doi: 10.1063/1.4818164 CrossRefPubMedGoogle Scholar
  38. Mendes-Pinto MM, Sansiaume E, Hashimoto H, Pascal AA, Gall A, Robert B (2013) Electronic absorption and ground state structure of carotenoid molecules. J Phys Chem B 117(38):11015–11021. doi: 10.1021/jp309908r CrossRefPubMedGoogle Scholar
  39. Miki T, Kakitani Y, Koyama Y, Nagae H (2008) Stimulated emission from the 1Bu(0) level and the 1Bu+(0)+1Bu (1 and 2) diabatic levels upon excitation to the 1Bu+(0) level in neurosporene and spheroidene. Chem Phys Lett 457(1–3):222–226. doi: 10.1016/j.cplett.2008.03.069 CrossRefGoogle Scholar
  40. Mukai-Kuroda Y, Fujii R, Ko-chi N, Sashima T, Koyama Y (2002) Changes in molecular structure upon triplet excitation of all-trans-spheroidene in n-hexane solution and 15-cis-spheroidene bound to the photo-reaction center from Rhodobacter sphaeroides as revealed by resonance-Raman spectroscopy and normal-coordinate analysis. J Phys Chem A 106(14):3566–3579. doi: 10.1021/jp0130822 CrossRefGoogle Scholar
  41. Nagae H, Kuki M, Cogdell RJ, Koyama Y (1994) Shifts of the 1Ag1Bu+ electronic absorption of carotenoids in nonpolar and polar-solvents. J Chem Phys 101(8):6750–6765. doi: 10.1063/1.468501 CrossRefGoogle Scholar
  42. Nagae H, Kuki M, Zhang JP, Sashima T, Mukai Y, Koyama Y (2000) Vibronic coupling through the in-phase, C=C stretching mode plays a major role in the 2Ag to 1Ag internal conversion of all-trans-β-carotene. J Phys Chem A 104(18):4155–4166. doi: 10.1021/jp9924833 CrossRefGoogle Scholar
  43. Nagae H, Kakitani Y, Koyama Y (2009) Theoretical description of diabatic mixing and coherent excitation in singlet-excited states of carotenoids. Chem Phys Lett 474(4–6):342–351. doi: 10.1016/j.cplett.2009.04.039 CrossRefGoogle Scholar
  44. Nagasawa Y, Seike K, Muromoto T, Okada T (2003) Two-dimensional analysis of integrated three-pulse photon echo signals of Nile blue doped in PMMA. J Phys Chem A 107(14):2431–2441. doi: 10.1021/jp027012m CrossRefGoogle Scholar
  45. Nagasawa Y, Mori Y, Nakagawa Y, Miyasuka H, Okada T (2005) Enhancement and suppression of vibrational coherence in degenerate four-wave-mixing signal generated from dye-doped polymer films. J Phys Chem B 109(24):11946–11952. doi: 10.1021/jp051187p CrossRefPubMedGoogle Scholar
  46. Ohta K, Maekawa H, Tominaga K (2004) Vibrational population relaxation of the –N=C=N– antisymmetric stretching mode of carbodiimide studied by the infrared transient grating method. J Phys Chem A 108(44):9484–9491. doi: 10.1021/jp047870d CrossRefGoogle Scholar
  47. Ostroumov EE, Khan YR, Scholes GD, Govindjee (2014) Photophysics of potosynthetic pigment-protein complexes. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration, including bioenergy and related processes, vol 40. Springer, Dordrecht, pp 97–128Google Scholar
  48. Oxtoby DW (1981) Vibrational-relaxation in liquids. Annu Rev Phys Chem 32:77–101. doi: 10.1146/annurev.pc.32.100181.000453 CrossRefGoogle Scholar
  49. Pariser R, Parr RG (1953) A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. II. J Chem Phys 21(5):767–776. doi: 10.1063/1.1699030 CrossRefGoogle Scholar
  50. Parson WW (2006) Modern optical spectroscopy: with examples from biophysics and biochemistry. Springer-Verlag, BerlinGoogle Scholar
  51. Polívka T, Chabera P, Kerfeld CA (2013) Carotenoid-protein interaction alters the S1 energy of hydroxyechinenone in the orange carotenoid protein. Biochim Biophys Acta Bioenerg 1827(3):248–254. doi: 10.1016/j.bbabio.2012.10.005 CrossRefGoogle Scholar
  52. Polívka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states-from solution to natural and artificial systems. Chem Rev 104(4):2021–2072. doi: 10.1021/cr020674n CrossRefPubMedGoogle Scholar
  53. Polívka T, Zigmantas D, Frank HA, Bautista JA, Herek JL, Koyama Y, Fujii R, Sundström V (2001) Near-infrared time-resolved study of the S1 state dynamics of the carotenoid spheroidene. J Phys Chem B 105(5):1072–1080. doi: 10.1021/jp002206s CrossRefGoogle Scholar
  54. Polli D, Cerullo G, Lanzani G, De Silvestri S, Yanagi K, Hashimoto H, Cogdell RJ (2004) Conjugation length dependence of internal conversion in carotenoids: role of the intermediate state. Phys Rev Lett 93(16):4. doi: 10.1103/PhysRevLett.93.163002 CrossRefGoogle Scholar
  55. Polli D, Cerullo G, Lanzani G, De Silvestri S, Hashimoto H, Cogdell RJ (2006) Carotenoid-bacteriochlorophyll energy transfer in LH2 complexes studied with 10-fs time resolution. Biophys J 90(7):2486–2497. doi: 10.1529/biophysj.105.069286 CrossRefPubMedCentralPubMedGoogle Scholar
  56. Ricci M, Bradforth SE, Jimenez R, Fleming GR (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes. Chem Phys Lett 259(3–4):381–390. doi: 10.1016/0009-2614(96)00832-9 CrossRefGoogle Scholar
  57. Rondonuwu FS, Watanabe Y, Fujii R, Koyama Y (2003) A first detection of singlet to triplet conversion from the 11Bu to the 13Ag state and triplet internal conversion from the 13Ag to the 13Bu state in carotenoids: dependence on the conjugation length. Chem Phys Lett 376(3–4):292–301. doi: 10.1016/s0009-2614(03)00983-7 CrossRefGoogle Scholar
  58. Rondonuwu FS, Yokoyama K, Fujii R, Koyama Y, Cogdell RJ, Watanabe Y (2004) The role of the 11Bu state in carotenoid-to-bacteriochlorophyll singlet-energy transfer in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rhodobacter sphaeroides 2.4.1, Rhodospirillum molischianum and Rhodopseudomonas acidophila. Chem Phys Lett 390(4–6):314–322. doi: 10.1016/j.cplett.2004.03.089 CrossRefGoogle Scholar
  59. Sakamoto A, Matsuno S, Tasumi M (2010) Picosecond near-infrared excited transient Raman spectra of beta-carotene in the excited S2 state: solvent effects on the in-phase C=C stretching band and vibronic coupling. J Mol Struct 976(1–3):310–313. doi: 10.1016/j.molstruc.2010.04.012 CrossRefGoogle Scholar
  60. Shim S, Mathies RA (2008) Development of a tunable femtosecond stimulated Raman apparatus and its application to β-carotene. J Phys Chem B 112(15):4826–4832. doi: 10.1021/jp710518y CrossRefPubMedGoogle Scholar
  61. Shimada R, Kano H, Hamaguchi HO (2008) Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering. J Chem Phys 129(2):9. doi: 10.1063/1.2950092 CrossRefGoogle Scholar
  62. Siebert T, Schmitt M, Engel V, Materny A, Kiefer W (2002) Population dynamics in vibrational modes during non-born-Oppenheimer Processes: CARS spectroscopy used as a mode-selective filter. J Am Chem Soc 124(22):6242–6243. doi: 10.1021/ja0173831 CrossRefPubMedGoogle Scholar
  63. Sue J, Mukamel S (1988) Solvation dynamics in coherent and spontaneous Raman-spectroscopy—application to beta-carotene. J Opt Soc Am B: Opt Phys 5(7):1462–1472. doi: 10.1364/josab.5.001462 CrossRefGoogle Scholar
  64. Sugisaki M, Yanagi K, Cogdell RJ, Hashimoto H (2007) Unified explanation for linear and nonlinear optical responses in β-carotene: a sub-20-fs degenerate four-wave mixing spectroscopic study. Phys Rev B 75(15):155110. doi: 10.1103/PhysRevB.75.155110 CrossRefGoogle Scholar
  65. Sugisaki M, Fujiwara M, Kosumi D, Fujii R, Nango M, Cogdell RJ, Hashimoto H (2010) Comparison of transient grating signals from spheroidene in an organic solvent and in pigment-protein complexes from Rhodobacter sphaeroides 2.4.1. Phys Rev B 81(20):245112. doi: 10.1103/PhysRevB.80.035118 CrossRefGoogle Scholar
  66. Sugisaki M, Kosumi D, Saito K, Cogdell RJ, Hashimoto H (2012) Generation of coherently coupled vibronic oscillations in carotenoids. Phys Rev B 85(24):245408. doi: 10.1103/PhysRevB.85.245408 CrossRefGoogle Scholar
  67. Tavan P, Schulten K (1986) The low-lying electronic excitations in long polyenes—a PPP-MRD-CL study. J Chem Phys 85(11):6602–6609. doi: 10.1063/1.451442 CrossRefGoogle Scholar
  68. Tavan P, Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36(8):4337–4358. doi: 10.1103/PhysRevB.36.4337 CrossRefGoogle Scholar
  69. van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons, Reissue edn edn. World Scientific Pub Co Inc., Singapore. doi: 10.1007/978-94-017-9032-1 CrossRefGoogle Scholar
  70. Wirtz AC, van Hemert MC, Lugtenburg J, Frank HA, Groenen EJJ (2007) Two stereoisomers of spheroidene in the Rhodobacter sphaeroides R26 reaction center: a DFT analysis of resonance Raman spectra. Biophys J 93(3):981–991. doi: 10.1529/biophysj.106.103473 CrossRefPubMedCentralPubMedGoogle Scholar
  71. Yoshizawa M, Aoki H, Hashimoto H (2001) Vibrational relaxation of the 2Ag excited state in all-trans-β-carotene obtained by femtosecond time-resolved Raman spectroscopy. Phys Rev B. doi: 10.1103/PhysRevB.63.180301 Google Scholar
  72. Zerbetto F, Zgierski MZ, Orlandi G, Marconi G (1987) Vibronic coupling in polyenes and their derivatives—interpretation of the absorption and emission-spectra of a derivative of dodecahexaene. J Chem Phys 87(5):2505–2512. doi: 10.1063/1.453090 CrossRefGoogle Scholar
  73. Zerbetto F, Zgierski MZ, Negri F, Orlandi G (1988) Theoretical-study of the force-fields of the 3 lowest singlet electronic states of linear polyenes. J Chem Phys 89(6):3681–3688. doi: 10.1063/1.454888 CrossRefGoogle Scholar
  74. Zhang JP, Inaba T, Watanabe Y, Koyama Y (2000) Excited-state dynamics among the 1Bu+, 1Bu and 2Ag states of all-trans-neurosporene as revealed by near-infrared time-resolved absorption spectroscopy. Chem Phys Lett 332(3–4):351–358. doi: 10.1016/s0009-2614(00)01275-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Noriyuki Tonouchi
    • 1
  • Daisuke Kosumi
    • 2
  • Mitsuru Sugisaki
    • 1
  • Mamoru Nango
    • 2
  • Hideki Hashimoto
    • 1
    • 2
  1. 1.Department of Physics, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA)OsakaJapan

Personalised recommendations