Skip to main content
Log in

Genetic and genomic analysis of RNases in model cyanobacteria

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu RD, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5(12):1512–1526

    PubMed Central  CAS  Google Scholar 

  • Anderson KL, Dunman PM (2009) Messenger RNA turnover processes in Escherichia coli, Bacillus subtilis, and emerging studies in Staphylococcus aureus. Int J Microbiol 2009:525491

    Article  PubMed Central  PubMed  Google Scholar 

  • Anupama K, Leela JK, Gowrishankar J (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82(6):1330–1348

    Article  CAS  PubMed  Google Scholar 

  • Apirion D (1973) Degradation of RNA in Escherichia coli. A hypothesis. Mol Gen Genet 122(4):313–322

    Article  CAS  PubMed  Google Scholar 

  • Apirion D, Watson N (1975) Mapping and characterization of a mutation in Escherichia coli that reduces the level of ribonuclease III specific for double-stranded ribonucleic acid. J Bacteriol 124(1):317–324

    PubMed Central  CAS  PubMed  Google Scholar 

  • Apirion D, Watson N (1978) Ribonuclease III is involved in motility of Escherichia coli. J Bacteriol 133(3):1543–1545

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bedu S, Peltier G, Sarrey F, Joset F (1990) Properties of a mutant from Synechocystis PCC6803 Resistant to acetazolamide, an inhibitor of carbonic anhydrase. Plant Physiol 93(4):1312–1315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Begemann MB, Zess EK, Walters EM, Schmitt EF, Markley AL, Pfleger BF (2013) An organic acid based counter selection system for cyanobacteria. PLoS One 8(10):e76594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beuf L, Bedu S, Cami B, Joset F (1995) A protein is involved in accessibility of the inhibitor acetazolamide to the carbonic anhydrase(s) in the cyanobacterium Synechocystis PCC 6803. Plant Mol Biol 27(4):779–788

    Article  CAS  PubMed  Google Scholar 

  • Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC, Mathy N, Tobin C, Daou R, Szyk J, Condon C (2007) Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 63(1):127–138

    Article  CAS  PubMed  Google Scholar 

  • Carpousis AJ, Vanhouwe G, Ehretsmann C, Krisch HM (1994) Copurification of Escherichia coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76(5):889–900

    Article  CAS  PubMed  Google Scholar 

  • Carpousis AJ, Luisi BF, McDowall KJ (2009) Endonucleolytic Initiation of mRNA Decay in Escherichia coli. Mol Biol RNA Proc Decay Prokaryotes 85:91–135

    Article  CAS  Google Scholar 

  • Celesnik H, Deana A, Belasco JG (2007) Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol Cell 27(1):79–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362:155–171

    Article  CAS  PubMed  Google Scholar 

  • Condon C (2010) What is the role of RNase J in mRNA turnover? RNA Biol 7(3):316–321

    Article  CAS  PubMed  Google Scholar 

  • Condon C, Putzer H (2002) The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 30(24):5339–5346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X (2013) RNase III: genetics and function; structure and mechanism. Annu Rev Genet 47:405–431

    Article  CAS  PubMed  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451(7176):355–358

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469

  • Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 103(18):7054–7058

    Article  PubMed Central  PubMed  Google Scholar 

  • Durand S, Gilet L, Condon C (2012) The essential function of B. subtilis RNase III is to silence foreign toxin genes. PLoS Genet 8(12):e1003181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eisenhut M, Georg J, Klahn S, Sakurai I, Mustila H, Zhang P, Hess WR, Aro EM (2012) The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply. J Biol Chem 287(40):33153–33162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brechemmier-Baey D, Putzer H (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33(7):2141–2152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao Y, Gong Y, Xu X (2013) RNase III-dependent down-regulation of ftsH by an artificial internal sense RNA in Anabaena sp. PCC 7120. FEMS Microbiol Lett 344(2):130–137

    Article  CAS  PubMed  Google Scholar 

  • Georg J, Dienst D, Schürgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klähn S, Lokstein H, Hess WR, Wilde A (2014) The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 26(9):3661–3679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  • Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95(20):11637–11642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kido M, Yamanaka K, Mitani T, Niki H, Ogura T, Hiraga S (1996) RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J Bacteriol 178(13):3917–3925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A, McDowall KJ (2010) Rapid cleavage of RNA by RNase E in the absence of 5′ monophosphate stimulation. Mol Microbiol 76(3):590–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leroy A, Vanzo NF, Sousa S, Dreyfus M, Carpousis AJ (2002) Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNA. Mol Microbiol 45(5):1231–1243

    Article  CAS  PubMed  Google Scholar 

  • Li L, Miles S, Melville Z, Prasad A, Bradley G, Breeden LL (2013) Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators. Mol Biol Cell 24(23):3697–3709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mackie GA (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C (2007) 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129(4):681–692

    Article  CAS  PubMed  Google Scholar 

  • Matos RG, Fialho AM, Giloh M, Schuster G, Arraiano CM (2012) The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties. PLoS One 7(3):e32690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600

    Article  PubMed Central  PubMed  Google Scholar 

  • Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 93(9):3865–3869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misra TK, Apirion D (1979) RNase E, an RNA processing enzyme from Escherichia coli. J Biol Chem 254(21):11154–11159

    CAS  PubMed  Google Scholar 

  • Mohanty BK, Giladi H, Maples VF, Kushner SR (2008) Analysis of RNA Decay, processing, and polyadenylation in Escherichia coli and other prokaryotes. RNA Turnover Bact Archaea Organelles 447:3–29

    Article  CAS  Google Scholar 

  • Murphy RC, Gasparich GE, Bryant DA, Porter RD (1990) Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene. J Bacteriol 172(2):967–976

  • Ow MC, Perwez T, Kushner SR (2003) RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol Microbiol 49(3):607–622

    Article  CAS  PubMed  Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381(6578):169–172

    Article  CAS  PubMed  Google Scholar 

  • Redko Y, Bechhofer DH, Condon C (2008) Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 68(5):1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Rott R, Zipor G, Portnoy V, Liveanu V, Schuster G (2003) RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 278(18):15771–15777

    Article  CAS  PubMed  Google Scholar 

  • Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro EM (2012) Positive regulation of psbA gene expression by cis-encoded antisense RNAs in synechocystis sp. PCC 6803. Plant Physiol 160(2):1000–1010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shahbabian K, Jamalli A, Zig L, Putzer H (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28(22):3523–3533

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053–1058

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stevens SEJ, Patterson COP, Meyers J (1973) The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9:427–430

    CAS  Google Scholar 

  • Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12(17):2770–2781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JY, Deng XM, Li FP, Wang L, Huang QY, Zhang CC, Chen WL (2014) RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region. RNA 20(4):568–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Bryant for providing the pSRA81 vector. We thank Dr. Himadri Pakrasi for providing access to the oxygen electrode used in physiological measurements. We thank Kymberleigh Romano, Alex Linz, and Alex Sanchez for their help with preliminary experiments. Funding for this work was provided by the Department of Energy (DE-SC0010329). GCG is the recipient of an NIH Biotechnology Training Fellowship (NIGMS—5 T32 GM08349). JCC and BFP conceived and designed the study. JCC and GCG performed experiments. JCC, GCG, and BFP analyzed and interpreted the data. JCC and BFP wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. Pfleger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4,806 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, J.C., Gordon, G.C. & Pfleger, B.F. Genetic and genomic analysis of RNases in model cyanobacteria. Photosynth Res 126, 171–183 (2015). https://doi.org/10.1007/s11120-015-0076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0076-2

Keywords

Navigation