Photosynthesis Research

, Volume 126, Issue 1, pp 171–183 | Cite as

Genetic and genomic analysis of RNases in model cyanobacteria

  • Jeffrey C. Cameron
  • Gina C. Gordon
  • Brian F. Pfleger
Regular Paper


Cyanobacteria are diverse photosynthetic microbes with the ability to convert CO2 into useful products. However, metabolic engineering of cyanobacteria remains challenging because of the limited resources for modifying the expression of endogenous and exogenous biochemical pathways. Fine-tuned control of protein production will be critical to optimize the biological conversion of CO2 into desirable molecules. Messenger RNAs (mRNAs) are labile intermediates that play critical roles in determining the translation rate and steady-state protein concentrations in the cell. The majority of studies on mRNA turnover have focused on the model heterotrophic bacteria Escherichia coli and Bacillus subtilis. These studies have elucidated many RNA modifying and processing enzymes and have highlighted the differences between these Gram-negative and Gram-positive bacteria, respectively. In contrast, much less is known about mRNA turnover in cyanobacteria. We generated a compendium of the major ribonucleases (RNases) and provide an in-depth analysis of RNase III-like enzymes in commonly studied and diverse cyanobacteria. Furthermore, using targeted gene deletion, we genetically dissected the RNases in Synechococcus sp. PCC 7002, one of the fastest growing and industrially attractive cyanobacterial strains. We found that all three cyanobacterial homologs of RNase III and a member of the RNase II/R family are not essential under standard laboratory conditions, while homologs of RNase E/G, RNase J1/J2, PNPase, and a different member of the RNase II/R family appear to be essential for growth. This work will enhance our understanding of native control of gene expression and will facilitate the development of an RNA-based toolkit for metabolic engineering in cyanobacteria.


mRNA RNA Ribonuclease Photosynthesis Cyanobacteria Synthetic biology Biofuels Comparative genomics 



We thank Dr. Bryant for providing the pSRA81 vector. We thank Dr. Himadri Pakrasi for providing access to the oxygen electrode used in physiological measurements. We thank Kymberleigh Romano, Alex Linz, and Alex Sanchez for their help with preliminary experiments. Funding for this work was provided by the Department of Energy (DE-SC0010329). GCG is the recipient of an NIH Biotechnology Training Fellowship (NIGMS—5 T32 GM08349). JCC and BFP conceived and designed the study. JCC and GCG performed experiments. JCC, GCG, and BFP analyzed and interpreted the data. JCC and BFP wrote the manuscript.

Supplementary material

11120_2015_76_MOESM1_ESM.pdf (4.7 mb)
Supplementary material 1 (PDF 4,806 kb)


  1. Abreu RD, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5(12):1512–1526PubMedCentralGoogle Scholar
  2. Anderson KL, Dunman PM (2009) Messenger RNA turnover processes in Escherichia coli, Bacillus subtilis, and emerging studies in Staphylococcus aureus. Int J Microbiol 2009:525491PubMedCentralCrossRefPubMedGoogle Scholar
  3. Anupama K, Leela JK, Gowrishankar J (2011) Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol 82(6):1330–1348CrossRefPubMedGoogle Scholar
  4. Apirion D (1973) Degradation of RNA in Escherichia coli. A hypothesis. Mol Gen Genet 122(4):313–322CrossRefPubMedGoogle Scholar
  5. Apirion D, Watson N (1975) Mapping and characterization of a mutation in Escherichia coli that reduces the level of ribonuclease III specific for double-stranded ribonucleic acid. J Bacteriol 124(1):317–324PubMedCentralPubMedGoogle Scholar
  6. Apirion D, Watson N (1978) Ribonuclease III is involved in motility of Escherichia coli. J Bacteriol 133(3):1543–1545PubMedCentralPubMedGoogle Scholar
  7. Bedu S, Peltier G, Sarrey F, Joset F (1990) Properties of a mutant from Synechocystis PCC6803 Resistant to acetazolamide, an inhibitor of carbonic anhydrase. Plant Physiol 93(4):1312–1315PubMedCentralCrossRefPubMedGoogle Scholar
  8. Begemann MB, Zess EK, Walters EM, Schmitt EF, Markley AL, Pfleger BF (2013) An organic acid based counter selection system for cyanobacteria. PLoS One 8(10):e76594PubMedCentralCrossRefPubMedGoogle Scholar
  9. Beuf L, Bedu S, Cami B, Joset F (1995) A protein is involved in accessibility of the inhibitor acetazolamide to the carbonic anhydrase(s) in the cyanobacterium Synechocystis PCC 6803. Plant Mol Biol 27(4):779–788CrossRefPubMedGoogle Scholar
  10. Britton RA, Wen T, Schaefer L, Pellegrini O, Uicker WC, Mathy N, Tobin C, Daou R, Szyk J, Condon C (2007) Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol Microbiol 63(1):127–138CrossRefPubMedGoogle Scholar
  11. Carpousis AJ, Vanhouwe G, Ehretsmann C, Krisch HM (1994) Copurification of Escherichia coli RNAase E and PNPase: evidence for a specific association between two enzymes important in RNA processing and degradation. Cell 76(5):889–900CrossRefPubMedGoogle Scholar
  12. Carpousis AJ, Luisi BF, McDowall KJ (2009) Endonucleolytic Initiation of mRNA Decay in Escherichia coli. Mol Biol RNA Proc Decay Prokaryotes 85:91–135CrossRefGoogle Scholar
  13. Celesnik H, Deana A, Belasco JG (2007) Initiation of RNA decay in Escherichia coli by 5′ pyrophosphate removal. Mol Cell 27(1):79–90PubMedCentralCrossRefPubMedGoogle Scholar
  14. Clerico EM, Ditty JL, Golden SS (2007) Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol Biol 362:155–171CrossRefPubMedGoogle Scholar
  15. Condon C (2010) What is the role of RNase J in mRNA turnover? RNA Biol 7(3):316–321CrossRefPubMedGoogle Scholar
  16. Condon C, Putzer H (2002) The phylogenetic distribution of bacterial ribonucleases. Nucleic Acids Res 30(24):5339–5346PubMedCentralCrossRefPubMedGoogle Scholar
  17. Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X (2013) RNase III: genetics and function; structure and mechanism. Annu Rev Genet 47:405–431CrossRefPubMedGoogle Scholar
  18. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190PubMedCentralCrossRefPubMedGoogle Scholar
  19. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451(7176):355–358CrossRefPubMedGoogle Scholar
  20. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(Web Server issue):W465–W469Google Scholar
  21. Duhring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 103(18):7054–7058PubMedCentralCrossRefPubMedGoogle Scholar
  22. Durand S, Gilet L, Condon C (2012) The essential function of B. subtilis RNase III is to silence foreign toxin genes. PLoS Genet 8(12):e1003181PubMedCentralCrossRefPubMedGoogle Scholar
  23. Eisenhut M, Georg J, Klahn S, Sakurai I, Mustila H, Zhang P, Hess WR, Aro EM (2012) The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply. J Biol Chem 287(40):33153–33162PubMedCentralCrossRefPubMedGoogle Scholar
  24. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Brechemmier-Baey D, Putzer H (2005) Ribonucleases J1 and J2: two novel endoribonucleases in B. subtilis with functional homology to E. coli RNase E. Nucleic Acids Res 33(7):2141–2152PubMedCentralCrossRefPubMedGoogle Scholar
  25. Gao Y, Gong Y, Xu X (2013) RNase III-dependent down-regulation of ftsH by an artificial internal sense RNA in Anabaena sp. PCC 7120. FEMS Microbiol Lett 344(2):130–137CrossRefPubMedGoogle Scholar
  26. Georg J, Dienst D, Schürgers N, Wallner T, Kopp D, Stazic D, Kuchmina E, Klähn S, Lokstein H, Hess WR, Wilde A (2014) The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 26(9):3661–3679PubMedCentralCrossRefPubMedGoogle Scholar
  27. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345CrossRefPubMedGoogle Scholar
  28. Kaberdin VR, Miczak A, Jakobsen JS, Lin-Chao S, McDowall KJ, von Gabain A (1998) The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly. Proc Natl Acad Sci USA 95(20):11637–11642PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kido M, Yamanaka K, Mitani T, Niki H, Ogura T, Hiraga S (1996) RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli. J Bacteriol 178(13):3917–3925PubMedCentralPubMedGoogle Scholar
  30. Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A, McDowall KJ (2010) Rapid cleavage of RNA by RNase E in the absence of 5′ monophosphate stimulation. Mol Microbiol 76(3):590–604PubMedCentralCrossRefPubMedGoogle Scholar
  31. Leroy A, Vanzo NF, Sousa S, Dreyfus M, Carpousis AJ (2002) Function in Escherichia coli of the non-catalytic part of RNase E: role in the degradation of ribosome-free mRNA. Mol Microbiol 45(5):1231–1243CrossRefPubMedGoogle Scholar
  32. Li L, Miles S, Melville Z, Prasad A, Bradley G, Breeden LL (2013) Key events during the transition from rapid growth to quiescence in budding yeast require posttranscriptional regulators. Mol Biol Cell 24(23):3697–3709PubMedCentralCrossRefPubMedGoogle Scholar
  33. Mackie GA (2013) RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11(1):45–57CrossRefPubMedGoogle Scholar
  34. Mathy N, Benard L, Pellegrini O, Daou R, Wen T, Condon C (2007) 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell 129(4):681–692CrossRefPubMedGoogle Scholar
  35. Matos RG, Fialho AM, Giloh M, Schuster G, Arraiano CM (2012) The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties. PLoS One 7(3):e32690PubMedCentralCrossRefPubMedGoogle Scholar
  36. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41(Web Server issue):W597–W600PubMedCentralCrossRefPubMedGoogle Scholar
  37. Miczak A, Kaberdin VR, Wei CL, Lin-Chao S (1996) Proteins associated with RNase E in a multicomponent ribonucleolytic complex. Proc Natl Acad Sci USA 93(9):3865–3869PubMedCentralCrossRefPubMedGoogle Scholar
  38. Misra TK, Apirion D (1979) RNase E, an RNA processing enzyme from Escherichia coli. J Biol Chem 254(21):11154–11159PubMedGoogle Scholar
  39. Mohanty BK, Giladi H, Maples VF, Kushner SR (2008) Analysis of RNA Decay, processing, and polyadenylation in Escherichia coli and other prokaryotes. RNA Turnover Bact Archaea Organelles 447:3–29CrossRefGoogle Scholar
  40. Murphy RC, Gasparich GE, Bryant DA, Porter RD (1990) Nucleotide sequence and further characterization of the Synechococcus sp. strain PCC 7002 recA gene: complementation of a cyanobacterial recA mutation by the Escherichia coli recA gene. J Bacteriol 172(2):967–976Google Scholar
  41. Ow MC, Perwez T, Kushner SR (2003) RNase G of Escherichia coli exhibits only limited functional overlap with its essential homologue, RNase E. Mol Microbiol 49(3):607–622CrossRefPubMedGoogle Scholar
  42. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res 40(Database issue):D290–D301PubMedCentralCrossRefPubMedGoogle Scholar
  43. Py B, Higgins CF, Krisch HM, Carpousis AJ (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381(6578):169–172CrossRefPubMedGoogle Scholar
  44. Redko Y, Bechhofer DH, Condon C (2008) Mini-III, an unusual member of the RNase III family of enzymes, catalyses 23S ribosomal RNA maturation in B. subtilis. Mol Microbiol 68(5):1096–1106CrossRefPubMedGoogle Scholar
  45. Rott R, Zipor G, Portnoy V, Liveanu V, Schuster G (2003) RNA polyadenylation and degradation in cyanobacteria are similar to the chloroplast but different from Escherichia coli. J Biol Chem 278(18):15771–15777CrossRefPubMedGoogle Scholar
  46. Sakurai I, Stazic D, Eisenhut M, Vuorio E, Steglich C, Hess WR, Aro EM (2012) Positive regulation of psbA gene expression by cis-encoded antisense RNAs in synechocystis sp. PCC 6803. Plant Physiol 160(2):1000–1010PubMedCentralCrossRefPubMedGoogle Scholar
  47. Shahbabian K, Jamalli A, Zig L, Putzer H (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28(22):3523–3533PubMedCentralCrossRefPubMedGoogle Scholar
  48. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053–1058PubMedCentralCrossRefPubMedGoogle Scholar
  49. Stevens SEJ, Patterson COP, Meyers J (1973) The production of hydrogen peroxide by blue-green algae: a survey. J Phycol 9:427–430Google Scholar
  50. Vanzo NF, Li YS, Py B, Blum E, Higgins CF, Raynal LC, Krisch HM, Carpousis AJ (1998) Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome. Genes Dev 12(17):2770–2781PubMedCentralCrossRefPubMedGoogle Scholar
  51. Zhang JY, Deng XM, Li FP, Wang L, Huang QY, Zhang CC, Chen WL (2014) RNase E forms a complex with polynucleotide phosphorylase in cyanobacteria via a cyanobacterial-specific nonapeptide in the noncatalytic region. RNA 20(4):568–579PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jeffrey C. Cameron
    • 1
  • Gina C. Gordon
    • 1
    • 2
  • Brian F. Pfleger
    • 1
    • 2
  1. 1.Department of Chemical and Biological EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Microbiology Doctoral Training ProgramUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations