Photosynthesis Research

, Volume 125, Issue 1–2, pp 23–29 | Cite as

The L(M196)H mutation in Rhodobacter sphaeroides reaction center results in new electrostatic interactions

  • Tatiana Y. Fufina
  • Lyudmila G. Vasilieva
  • Azat G. Gabdulkhakov
  • Vladimir A. Shuvalov
Regular Paper


New histidine residue was introduced in M196 position in the reaction center of Rhodobacter sphaeroides in order to alter polarity of the BChl dimer’s protein environment and to study how it affects properties and structure of the primary electron donor P. It was shown that in the absorption spectrum of the mutant RC the 6 nm red shift of the Q Y P band was observed together with considerable decrease of its amplitude. The mid-point potential of P/P + in the mutant RC was increased by +65 (±15) mV as compared to the E m P/P + value in the wild-type RC suggesting that the mutation resulted in new pigment–protein interactions. Crystal structure of RC L(M196)H determined at 2.4 Å resolution implies that BChl Р В and introduced histidine-M196 organize new electrostatic contact that may be specified either as π–π staking or as hydrogen–π interaction. Besides, the structure of the mutants RC shows that His-M196 apparently became involved in hydrogen bond network existing in BChl Р В vicinity that may favor stability of the mutant RC.


Photosynthetic reaction center Bacteriochlorophyll Site-directed mutagenesis Rhodobacter sphaeroides Pigment–protein interactions Electrostatic interactions 







Primary electron donor

PA and PB

BChls constituting P


Reaction center


Wild type



The authors thank Dr. Maria Khrenova from Moscow State University for helpful discussions and Maria Leonova for technical assistance. This work was supported by “Molecular and Cell Biology” grant and grants from Russian Foundation for Basic Research (13-04-01148a, 12-04-00332, 13-04-40297-H and 4771.2014.4).


  1. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD (2012) Towards automated crystallographic structure refinement with phenix.refine. Acta Cryst D 68:352–367CrossRefGoogle Scholar
  2. Allen JP, Williams JC (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers. J Bioenergy Biomembr 27:275–283CrossRefGoogle Scholar
  3. Antolini F, Trotta M, Nicolini C (1995) Effect of temperature on optical properties of reaction centres organized in Langmuir-Blodgett films. Thin Solid Films 254:252–256CrossRefGoogle Scholar
  4. Bolgarina TI, Khatypov RA, Vasil’eva LG, Shkuropatov AY, Shuvalov VA (2004) Substitution of isoleucine M206 residue by histidine in the Rhodobacter sphaeroides reaction centers causes changes in the structure of the special bacteriochlorophyll pair molecule. Dokl Biochem Biophys 394:26–29PubMedCrossRefGoogle Scholar
  5. Burley SK, Petsko GA (1986) Amino-aromatic interactions in proteins. FEBS Lett 203:139–143PubMedCrossRefGoogle Scholar
  6. Bylina EJ, Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85:7226–7230PubMedCentralPubMedCrossRefGoogle Scholar
  7. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180:385–398PubMedCrossRefGoogle Scholar
  8. Du Q, Wang Q, Du L, Chen D, Huang R (2013) Theoretical study on the polar hydrogen-π (Hp-π) interactions between protein side chains. Chem Cent J 7:92–99PubMedCentralPubMedCrossRefGoogle Scholar
  9. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Cryst D 66:486–501CrossRefGoogle Scholar
  10. Ermler U, Fritzsch G, Buchanan SK, Michel H (1994) Structure of the photosynthetic reaction centre from Rhodobacter sphaeroides at 2.65 Å resolution: cofactors and protein-cofactor interactions. Structure 2:925–936PubMedCrossRefGoogle Scholar
  11. Fufina TY, Vasilieva LG, Khatypov RA, Shkuropatov AY, Shuvalov VA (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit. FEBS Lett 581:5769–5773PubMedCrossRefGoogle Scholar
  12. Fufina TY, Vasilieva LG, Shuvalov VA (2010) Examination of stability of mutant photosynthetic reaction center of Rhodobacter sphaeroides I(L177)H and determination of location of bacteriochlorophyll covalently bound to the protein. Biochemistry (Mosc) 75:208–213CrossRefGoogle Scholar
  13. Fufina TY, Vasilieva LG, Khatypov RA, Shuvalov VA (2013) Spectral properties of the Rhodobacter sphaeroides mutant photo-reaction center with double amino acid substitution I(L177)H + H(L173)L. Photosynthesis Research for Food, Fuel and the Future Advanced Topics in Science and Technology in China 46–49Google Scholar
  14. Gabdulkhakov AG, Fufina TY, Vasilieva LG, Mueller U, Shuvalov VA (2013) Expression, purification, crystallization and preliminary X-ray structure analysis of wild-type and L(M196)H-mutant Rhodobacter sphaeroides reaction centres. Acta Crystallogr Sect F 69:506–509CrossRefGoogle Scholar
  15. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96:9459–9464PubMedCentralPubMedCrossRefGoogle Scholar
  16. Heller BA, Holten D, Kirmaier C (1996) Effects of Asp residues near the L-side pigments in bacterial reaction centers. Biochemistry 35:15418–15427PubMedCrossRefGoogle Scholar
  17. Holden-Dye K, Crouch LI, Williams CM, Bone RA, Cheng J, Böhles F, Heathcote P, Jones MR (2011) Opposing structural changes in two symmetrical polypeptides bring about opposing changes to the thermal stability of a complex integral membrane protein. Arch Biochem Biophys 505:160–170PubMedCrossRefGoogle Scholar
  18. Hunter CA, Sanders JKM (1990) The nature of T-T interactions. J Am Chem Soc 112:5525–5534CrossRefGoogle Scholar
  19. Ivancich A, Mattioli TA, Artz K, Wang S, Allen JP, Williams JC (1997) Influence of Asn/His L166 on the hydrogen-bonding pattern and redox potential of the primary donor of purple bacterial reaction centers. Biochemistry 36:3027–3036PubMedCrossRefGoogle Scholar
  20. Ivancich A, Artz K, Williams JC, Allen JP, Mattioli TA (1998) Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Biochemistry 37:11812–11820PubMedCrossRefGoogle Scholar
  21. Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494PubMedCrossRefGoogle Scholar
  22. Jones MR (2009) Structural plasticity of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media BV, Dordrecht, pp 295–321CrossRefGoogle Scholar
  23. Katilius E, Babendure J, Lin S, Woodbury N (2004) Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side. Photosynth Res 81:165–180CrossRefGoogle Scholar
  24. Kirmaier C, Weems D, Holten D (1999) M-side electron transfer in reaction center mutants with a lysine near the nonphotoactive bacteriochlorophyll. Biochemistry 38:11516–11530PubMedCrossRefGoogle Scholar
  25. Leonova MM, Vasilieva LG, Khatypov RA, Boichenko VA, Shuvalov VA (2009) Properties of mutant reaction centers of Rhodobacter sphaeroides with substitutions of histidine L153, the axial Mg2+ ligand of bacteriochlorophyll B(A). Biochemistry (Mosc) 74:452–460CrossRefGoogle Scholar
  26. Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB (2013) The multiple roles of histidine in protein interactions. Chem Cent J 7:44–55PubMedCentralPubMedCrossRefGoogle Scholar
  27. Martinez CR, Iverson BL (2012) Analysis of anisotropic side-chain packing in proteins and application to high-resolution structure prediction. Chem Sci 2:2191–2201CrossRefGoogle Scholar
  28. McAuley-Hecht KE, Fyfe PK, Ridge JP, Prince SM, Hunter CN, Isaacs NW, Cogdell RJ, Jones MR (1998) Structural studies of wild-type and mutant reaction centers from an antenna-deficient strain of Rhodobacter sphaeroides: monitoring the optical properties of the complex from bacterial cell to crystal. Biochemistry 37:4740–4750PubMedCrossRefGoogle Scholar
  29. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Cryst 40:658–674CrossRefGoogle Scholar
  30. Misura KM, Morozov AV, Baker D (2004) Analysis of anisotropic side-chain packing in proteins and application to high-resolution structure prediction. J Mol Biol 342:651–664PubMedCrossRefGoogle Scholar
  31. Mohapatra SR, Ramanathn K, Shanthi V, Srivastava S, Sethumadhavan R (2011) Computational investigation of N-H…π interaction in the structural stability of transmembrane proteins. Int J Pharm Pharm Sci 3:106–111.
  32. Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW, Williams JC (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32:3498–3505PubMedCrossRefGoogle Scholar
  33. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst D 67:355–367CrossRefGoogle Scholar
  34. Nabedryk E, Breton J, Williams JC, Allen JP, Kuhn M, Lubitz W (1998) FTIR characterization of the primary electron donor in double mutants combining the heterodimer HL(M202) with the LH(L131), HF(L168), FH(M197), or LH(M160) mutations. Spectrochim Acta A-Mol Biomol Spec 54:1219–1230CrossRefGoogle Scholar
  35. Sandberg L, Edholm O (2001) Calculated solvation free energies of amino acids in a dipolar approximation. J Phys Chem 105:273–281CrossRefGoogle Scholar
  36. Schrodinger Knowledge base, Article ID 1556.
  37. Spiedel D, Roszak AW, McKendrick K, McAuley KE, Fyfe PK, Nabedryk E, Breton J, Robert B, Cogdell RJ, Isaacs NW, Jones MR (2002a) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure. Biochim Biophys Acta 1554:75–93PubMedCrossRefGoogle Scholar
  38. Spiedel D, Jones MR, Robert B (2002b) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: effects of amino acid polarity and position. FEBS Lett 527:171–175PubMedCrossRefGoogle Scholar
  39. Vasilieva LG, Fufina TY, Gabdulkhakov AG, Leonova MM, Khatypov RA, Shuvalov VA (2012) The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of P(A) and B(B) bacteriochlorophylls. Biochim Biophys Acta 1817:1407–1417PubMedCrossRefGoogle Scholar
  40. Wand Y, Hu X (2002) A quantum chemistry study of binding carotenoids in the bacterial light-harvesting complexes. J Am Chem Soc 124:8445–8451CrossRefGoogle Scholar
  41. Wang Y, Mao L, Hu X (2004) Insight into the structural role of carotenoids in the photosystem I: a quantum chemical analisis. Biophys J 86:3097–3111PubMedCentralPubMedCrossRefGoogle Scholar
  42. Williams JC, Allen JP (2009) Directed modification of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media BV, Dordreht, pp 337–353CrossRefGoogle Scholar
  43. Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW, Allen JP (1992) Effect of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31:11029–11037PubMedCrossRefGoogle Scholar
  44. Williams JC, Haffa AL, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407PubMedCrossRefGoogle Scholar
  45. Fujii R, Adachi S, Roszak AW, Gardiner AT, Cogdell RJ, Isaacs NW, Koshihara S, Hashimoto H Unpublished work PDB entry 3i4dGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tatiana Y. Fufina
    • 1
  • Lyudmila G. Vasilieva
    • 1
  • Azat G. Gabdulkhakov
    • 2
  • Vladimir A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations