Skip to main content
Log in

Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In the present study, the influence of 50 and 100 µM CuSO4 was investigated starting from 3 h till 72 h treatment of 4-weeks Brassica napus plants. High CuSO4 concentrations in nutrient medium resulted in the rapid copper accumulation in plants, especially in roots, much slower and to lower degree in leaves. Copper excess induced early decrease in the leaf water content and temporary leaf wilting. The decrease in content of photosynthetic pigments became significant to 24 h of excessive copper treatments and reached 35 % decrease to 72 h, but there were no significant changes in maximum quantum efficiency of photosystem II photochemistry. The copper excess affected the expression of ten genes involved in heavy metal homeostasis and copper detoxification. The results showed the differential and organ-specific expression of most genes. The potential roles of copper-activated genes encoding heavy metal transporters (ZIP5, NRAMP4, YSL2, and MRP1), metallothioneins (MT1a and MT2b), low-molecular chelator synthesis enzymes (PCS1 and NAS2), and metallochaperones (CCS and HIPP06) in heavy metal homeostasis and copper ion detoxification were discussed. The highest increase in gene expression was shown for NRAMP4 in leaves in spite of relatively moderate Cu accumulation there. The opinion was advanced that the NRAMP4 activation can be considered among the early reactions in the defense of the photosystem II against copper excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ATX1:

Antioxidant 1-like

CCS:

Copper chaperone for Cu/Zn superoxide dismutase

Car:

Carotin

Chl:

Chlorophyll

COPT:

Copper transporter

DW:

Dry weight

F 0 :

Minimal fluorescence yield of dark-adapted state

F m :

Maximal fluorescence yield of dark-adapted state

F v :

Variable fluorescence = F m − F 0

F v/F m :

Maximal quantum yield of PSII photochemistry

FW:

Fresh weight

HIPP:

Heavy metal-associated isoprenylated plant protein

HM:

Heavy metal

MRP:

Multidrug resistance-associated protein homolog

MT:

Metallothionein

NAS:

Nicotianamine synthase

NRAMP:

Natural resistance-associated macrophage protein

PC:

Phytochelatin

PCS:

Phytochelatin synthase

ROS:

Reactive oxygen species

PS:

Photosystem

Xan:

Xanthophyll

YSL:

Yellow stripe-like

ZIP:

Zrt-, Irt-like protein

References

  • Abdel-Ghany SE (2009) Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. Planta 229:767–779

    Article  CAS  PubMed  Google Scholar 

  • Baker N (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bernal M, Roncel M, Ortega J, Picorel R, Yruela I (2004) Copper effect on cytochrome b559 of photosystem II under photoinhibitory conditions. Physiol Plant 120:686–694

    Article  CAS  PubMed  Google Scholar 

  • Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  CAS  PubMed  Google Scholar 

  • Burzynski M, Klobus G (2004) Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42:505–510

    Article  CAS  Google Scholar 

  • Caspi V, Droppa M, Horvath G, Malkin S, Marder J, Raskin V (1999) The effect of copper on chlorophyll organization during greening of barley leaves. Photosynth Res 62:165–174

    Article  CAS  Google Scholar 

  • Chettri MK, Cook CM, Vardaka E, Sawidis T, Lanaras T (2014) The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis. Environ Exp Bot 39:1–10

    Article  Google Scholar 

  • Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2011) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 234:139–156

    Article  CAS  PubMed  Google Scholar 

  • de Abreu-Neto JB, Turchetto-Zolet AC, de Oliveira LFV, Zanettini MHB, Margis-Pinheiro M (2013) Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280:1604–1616

    Article  PubMed  Google Scholar 

  • Di Donato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like 2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414

    Article  Google Scholar 

  • Ducic T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  CAS  Google Scholar 

  • Gonzalez-Mendoza D, Quiroz Moreno A, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2007) Role of phytochelatins in phytoremediation of heavy metals. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, New york, pp 101–146

    Chapter  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488

    Article  CAS  PubMed  Google Scholar 

  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146:1697–1706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanova E, Kholodova V, Kuznetsov Vl (2010) Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants. Russ J Plant Physiol 57:864–873

    Article  Google Scholar 

  • Kholodova V, Volkov K, Abdeyeva A, Kuznetsov V (2011) Water status in Mesembryanthemum crystallinum under heavy metal stress. Environ Exp Bot 71:382–389

    CAS  Google Scholar 

  • Kulikova A, Kuznetsova N, Kholodova V (2011) Effect of copper excess in environment on soybean root viability and morphology. Russ J Plant Physiol 58:719–727

    Article  Google Scholar 

  • Lanquar V, Ramos MS, Lelièvre F, Barbier-Brygoo H, Krieger-Liszkay A, Krämer U, Thomine S (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Zhai Z, Jobe TO, Akmakjian GZ, Song WY, Limbo O, Russell MR, Kozlovskyy VI, Martinoia E, Vatamaniuk OK, Russell P, Schroeder JI (2010) Tonoplast-localized abc2 transporter mediates phytochelatin accumulation in vacuoles and confers cadmium tolerance. J Biol Chem 285:40416–40426

    Article  PubMed Central  PubMed  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni(II) complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Oláh V, Lakatos G, Bertók C, Kanalas P, Szőllősi E, Kis J, Mészáros I (2010) Short-term chromium(VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L. Photosynthetica 48:513–520

    Article  Google Scholar 

  • Oomen RJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    Article  CAS  PubMed  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Kroneck PMH, Küpper H (2013) Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation. Environ Sci Technol 47:6120–6128

    CAS  PubMed  Google Scholar 

  • Perales-Vela HV, González-Moreno S, Montes-Horcasitas C, Cañizares-Villanueva RO (2007) Growth, photosynthetic and respiratory responses to sub-lethal copper concentrations in Scenedesmus incrassatulus (Chlorophyceae). Chemosphere 67:2274–2281

    Article  CAS  PubMed  Google Scholar 

  • Sagardoy R, Morales F, Lopez-Millan AF, Abadìa A, Abadìa J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339–350

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U (1997) Chlorophyll fluorescence and photosynthetic energy conversion: simple introductory experiments with the TEACHING-PAM Chlorophyll Fluorometer. Heinz Walz GmbH, Effeltrich, p 73

    Google Scholar 

  • Sochia AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:1–16

    Google Scholar 

  • Stephens BW, Cook DR, Grusak MA (2011) Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula. Biometals 24:51–58

    Article  CAS  PubMed  Google Scholar 

  • Stiborova M, Ditrichova M, Brezinova A (1987) Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedlings. Biol Plant 29:5453–5467

    Google Scholar 

  • Suzuki N, Yamaguchi Y, Koizumi N, Sano H (2002) Functional characterization of a heavy metal binding protein CdI19 from Arabidopsis. Plant J 32:165–173

    Article  CAS  PubMed  Google Scholar 

  • Thomas G, Stark HJ, Wellenreuther G, Dickinson B, Küpper H (2013) Effects of nanomolar copper on water plants—comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions. Aquat Toxicol 140–141:27–36

    Article  PubMed  Google Scholar 

  • Vangrosveld J, Clijsters H (1994) Toxic effect of metals. In: Farago MG (ed) Plants and the chemical elements. VCH, Weinheim, pp 149–177

    Chapter  Google Scholar 

  • Wojcik M, Tukiendorf A (2003) Response of wild type of Arabidopsis thaliana to copper stress. Biol Plant 46:79–84

    Article  CAS  Google Scholar 

  • Wu J, Zhao FJ, Ghandilyan A, Logoteta B, Guzman MO, Schat H, Wang X, Aarts MGM (2009) Identification and functional analysis of two ZIP metal transporters of the hyperaccumulator Thlaspi caerulescens. Plant Soil 325:79–95

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported through funding from the Russian Foundation for Basic Research, project no. 13-04-01001, and the Presidium of the Russian Academy of Sciences (Molecular and Cellular Biology Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Kuznetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlobin, I.E., Kholodova, V.P., Rakhmankulova, Z.F. et al. Brassica napus responses to short-term excessive copper treatment with decrease of photosynthetic pigments, differential expression of heavy metal homeostasis genes including activation of gene NRAMP4 involved in photosystem II stabilization. Photosynth Res 125, 141–150 (2015). https://doi.org/10.1007/s11120-014-0054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0054-0

Keywords

Navigation