Photosynthesis Research

, Volume 122, Issue 3, pp 305–314 | Cite as

High correlation between thermotolerance and photosystem II activity in tall fescue

  • Ke Chen
  • Xiaoyan Sun
  • Erick Amombo
  • Qing Zhu
  • Zhuangjun Zhao
  • Liang Chen
  • Qingguo Xu
  • Jinmin Fu
Regular Paper


Heat stress affects a broad spectrum of cellular components and metabolism. The objectives of this study were to investigate the behavior of Photosystem II (PSII) in tall fescue (Festuca arundinacea Schreb) with various thermotolerance capacities and to broaden our comprehension about the relationship between thermotolerance and PSII function. Heat-tolerant and heat-sensitive accessions were incubated at 24 °C (control) and 46 °C (heat stress) for 5 h. The fluorescence transient curves (OJIP curves), slow Chl fluorescence kinetic, and light response curve were employed to study the behavior of PSII subjected to heat stress. After heat stress, performance index for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors (PITotal), the value of electrons produced per photon (a), and the maximal rate of electron transport (ETRmax) of heat-tolerant accessions were lower than those of heat-sensitive accessions. Relatively lower reactive oxygen species (ROS) contents were detected in heat-tolerant accessions. Simultaneously, there was a significant decline in the quantum yield of photochemical energy conversion in PS II (Y(II)), probability that a PSII Chl molecule functions as reaction center (γRC), and the increase of quantum yield for non-regulated non-photochemical energy loss (Y(NO)) in heat-tolerant accessions. Moreover, a significant inverse correlation between heat tolerance indexes (HTI) and Y(II) was observed. Therefore, maintaining a lower photochemical activity in heat-tolerant accessions could be a crucial strategy to improve their thermotolerance. This finding could be attributed to the structural difference in the reaction center, and for heat-tolerant accessions, it could simultaneously limit energy input into linear electron transport, and dissipate more energy through non-regulated non-photochemical energy loss processes.


Photosystem II Thermotolerance Tall fescue OJIP transient Slow Chl fluorescence kinetics Light response curves 



We are grateful for the financial support provided by the, China-Africa Center for Research and Education, Chinese Academy of Sciences (SAJC201325), National Natural Science Foundation of China (No. 31071822), the National High Technology Research and Development Program of China (i.e. “863” plan, No. 2011AA100209-2) and the Key laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences (No. Y052811t04).


  1. Allakhverdiev S, Feyziev YM, Ahmed A, Hayashi H, Aliev JA, Klimov V, Murata N, Carpentier R (1996) Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J Photoch Photobio B 34:149–157. doi: 10.1016/1011-1344(95)07276-4 CrossRefGoogle Scholar
  2. Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41-49. doi: 10.1078/0176-1617-00845
  3. Apel K, Hirt H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 PubMedCrossRefGoogle Scholar
  4. Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Bba-Bioenergetics 1143:113–134. doi: 10.1016/0005-2728(93)90134-2 PubMedCrossRefGoogle Scholar
  5. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396. doi: 10.1104/pp.106.082040 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Barber J (2002) Photosystem II: a multisubunit membrane protein that oxidises water. Curr Opin Struc Biol 12:523–530. doi: 10.1016/s0959-440x(02)00357-3 CrossRefGoogle Scholar
  7. Chen K, Chen L, Fan J, Fu J (2013) Alleviation of heat damage to photosystem II by nitric oxide in tall fescue. Photosynth Res 116:21–31. doi: 10.1007/s11120-013-9883-5 PubMedCrossRefGoogle Scholar
  8. Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. P Natl Acad Sci Usa 97:13430–13435. doi: 10.1073/pnas.230451497 CrossRefGoogle Scholar
  9. Dhir R, Harkess RL, Bi G (2011) Elevated air temperatures cause foliar bleaching of ivy geranium ‘Beach’and ‘Butterfly’. Hortscience 46:411–415Google Scholar
  10. Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546. doi: 10.1104/pp.116.2.539 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. doi: 10.1038/35041687 PubMedCrossRefGoogle Scholar
  12. Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114. doi: 10.1016/S0098-8472(00)00084-8 PubMedCrossRefGoogle Scholar
  13. Havaux M (1993) Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Sci 94:19–33. doi: 10.1016/0168-9452(93)90003-I CrossRefGoogle Scholar
  14. Heckathorn SA, Ryan SL, Baylis JA, Wang D, Hamilton EW III, Cundiff L, Luthe DS (2002) In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct Plant Biol 29:935–946. doi: 10.1071/PP01191 CrossRefGoogle Scholar
  15. Hendrickson L, Furbank RT, Chow WS (2004) A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth Res 82:73–81. doi: 10.1023/B:PRES.0000040446.87305.f4 PubMedCrossRefGoogle Scholar
  16. Horton P, Ruban A, Walters R (1996) Regulation of light harvesting in green plants. Annu Rev Plant Biol 47:655–684. doi: 10.1146/annurev.arplant.47.1.655 CrossRefGoogle Scholar
  17. Huther CM, Ramm A, Rombaldi CV, Bacarin MA (2013) Physiological response to heat stress of tomato ‘Micro-Tom’ plants expressing high and low levels of mitochondrial sHSP23.6 protein. Plant Growth Regul 70:175–185. doi: 10.1007/s10725-013-9790-y CrossRefGoogle Scholar
  18. Jiang YW, Huang BR (2001) Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses. J Exp Bot 52:341–349. doi: 10.1093/jexbot/52.355.341 PubMedCrossRefGoogle Scholar
  19. Joliot P, Joliot A (2005) Quantification of cyclic and linear flows in plants. P Natl Acad Sci Usa 102:4913–4918. doi: 10.1073/pnas.0501268102 CrossRefGoogle Scholar
  20. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316. doi: 10.1016/j.pbi.2007.04.011 PubMedCrossRefGoogle Scholar
  21. Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of Q(A) redox state and excitation energy fluxes. Photosynth Res 79:209–218. doi: 10.1023/B:PRES.0000015391.99477.0d PubMedCrossRefGoogle Scholar
  22. Mian MR, Zhang Y, Wang Z-Y, Zhang J-Y, Cheng X, Chen L, Chekhovskiy K, Dai X, Mao C, Cheung F (2008) Analysis of tall fescue ESTs representing different abiotic stresses, tissue types and developmental stages. Bmc Plant Biol 8:27. doi: 10.1186/1471-2229-8-27 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi: 10.1016/S1360-1385(02)02312-9 PubMedCrossRefGoogle Scholar
  24. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. doi: 10.1016/j.tplants.2005.11.002 PubMedCrossRefGoogle Scholar
  25. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Biol 50:333–359. doi: 10.1146/annurev.arplant.50.1.333 CrossRefGoogle Scholar
  26. Pospíšil P (2012) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Bba-Bioenergetics 1817:218–231. doi: 10.1016/j.bbabio.2011.05.017 PubMedCrossRefGoogle Scholar
  27. Pospisil P, Snyrychova I, Naus J (2007) Dark production of reactive oxygen species in photosystem II membrane particles at elevated temperature: EPR spin-trapping study. Bba-Bioenergetics 1767:854–859. doi: 10.1016/j.bbabio.2007.02.011 PubMedCrossRefGoogle Scholar
  28. Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Bba-Bioenergetics 1320:95–106. doi: 10.1016/s0005-2728(97)00017-0 CrossRefGoogle Scholar
  29. Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using JIP-test. Sci Hortic-Amsterdam 128:1–6. doi: 10.1016/j.scienta.2010.12.003 CrossRefGoogle Scholar
  30. Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187. doi: 10.1016/S1360-1385(03)00047-5 PubMedCrossRefGoogle Scholar
  31. Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi: 10.1016/j.tplants.2008.01.005 PubMedCrossRefGoogle Scholar
  32. Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638. doi: 10.1104/pp.106.090712 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Toth SZ, Schansker G, Garab G, Strasser RJ (2007a) Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystem II. Bba-Bioenergetics 1767:295–305. doi: 10.1016/j.bbabio.2007.02.019 PubMedCrossRefGoogle Scholar
  34. Toth SZ, Schansker G, Strasser RJ (2007b) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynth Res 93:193–203. doi: 10.1007/s11120-007-9179-8 PubMedCrossRefGoogle Scholar
  35. Tsimilli-Michael M, Strasser R (2008) Experimental Resolution and Theoretical Complexity Determine the Amount of Information Extractable from the Chlorophyll Fluorescence Transient OJIP. In: Allen J, Gantt E, Golbeck J, Osmond B (eds) Photosynthesis. Energy from the Sun. Springer Netherlands, pp 697–702. doi: 10.1007/978-1-4020-6709-9_156
  36. Turgeon A (2008) Turfgrass management, 8th edn. Pearson Prentice Hall, Upper Saddle River, NJGoogle Scholar
  37. Wen XG, Gong HM (2005) Lu CM (2005) Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci 168:1471–1476. doi: 10.1016/J.Plantsci.01.015 CrossRefGoogle Scholar
  38. Xu S, Li JL, Zhang XQ, Wei H (2005) Cui LJ (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285. doi: 10.1016/J.Envexpbot.03.002 CrossRefGoogle Scholar
  39. Yamashita A, Nijo N, Pospisil P, Morita N, Takenaka D, Aminaka R, Yamamoto Y, Yamamoto Y (2008) Quality control of photosystem II - Reactive oxygen species are responsible for the damage to photosystem II under moderate heat stress. J Biol Chem 283:28380–28391. doi: 10.1074/Jbc.M710465200 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yoshioka M, Uchida S, Mori H, Komayama K, Ohira S, Morita N, Nakanishi T, Yamamoto Y (2006) Quality control of photosystem II - Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. J Biol Chem 281:21660–21669. doi: 10.1074/Jbc.M602896200 PubMedCrossRefGoogle Scholar
  41. Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Sarin NB, Govindjee (2010) Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Bba-Bioenergetics 1797:1428–1438. doi: 10.1016/j.bbabio.2010.02.002 PubMedCrossRefGoogle Scholar
  42. Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 angstrom resolution. Nature 409:739–743. doi: 10.1038/35055589 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ke Chen
    • 1
  • Xiaoyan Sun
    • 1
  • Erick Amombo
    • 1
  • Qing Zhu
    • 2
  • Zhuangjun Zhao
    • 1
  • Liang Chen
    • 1
  • Qingguo Xu
    • 3
  • Jinmin Fu
    • 1
  1. 1.Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden,Chinese Academy of ScienceWuhan CityPeople’s Republic of China
  2. 2.Wuhan Kaidi Electric Power Environmental Co., Ltd.WuhanChina
  3. 3.College of AgronomyHunan Agricultural UniversityChangSha CityPeople’s Republic of China

Personalised recommendations