Photosynthesis Research

, Volume 111, Issue 1–2, pp 205–217 | Cite as

Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes

  • Kuo-Hsiang Tang
  • Robert E. Blankenship


Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.


Chlorosomes Chloroflexus aurantiacus Dynamic light scattering Light-harvesting antennas Small-angle neutron scattering Purple bacteria Reaction centers 



The authors thank Dr. Volker S. Urban at Oak Ridge National Laboratory for assistance on SANS data collection and Dr. Pratim Biswas at the Department of Energy, Environmental and Chemical Engineering at Washington University on the work of the chlorosomes. We also thank Dr. Jakub Pšenčík of Charles University, Czech Republic for the unpublished results in Fig. 5A and helpful discussions on the types of information available from SAXS and SANS. This paper is based upon work supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035.


  1. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166PubMedCrossRefGoogle Scholar
  2. Arnoux B, Ducruix A, Reiss-Husson F, Lutz M, Norris J, Schiffer M, Chang CH (1989) Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides. FEBS Lett 258:47–50PubMedCrossRefGoogle Scholar
  3. Baldwin RL (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71:2056–2063PubMedCrossRefGoogle Scholar
  4. Berne BJ, Pecora R (1974) Laser light scattering from liquids. Ann Rev Phys Chem 25:233–253CrossRefGoogle Scholar
  5. Berne BJ, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology and physics. Dover, New YorkGoogle Scholar
  6. Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  7. Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 195–217Google Scholar
  8. Bohren CF, Huffman D (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  9. Borsali R, Nguyen H, Pecora R (1998) Small-angle neutron scattering and dynamic light scattering from a polyelectrolyte solution: DNA. Macromolecules 31:1548–1555CrossRefGoogle Scholar
  10. Brown R (1828) A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philos Mag 4:161–173Google Scholar
  11. Cardoso MB, Smolensky D, Heller WT, O’Neill H (2009) Insight into the structure of light-harvesting complex II and its stabilization in detergent solution. J Phys Chem B 113:16377–16383PubMedCrossRefGoogle Scholar
  12. Chadwick J (1932a) The existence of a neutron. Proc R Soc A 136:692–708CrossRefGoogle Scholar
  13. Chadwick J (1932b) Possible existence of a neutron. Nature 129:312CrossRefGoogle Scholar
  14. Chodankar S, Aswal VK, Kohlbrecher J, Vavrin R, Wagh AG (2007) Surfactant-induced protein unfolding as studied by small-angle neutron scattering and dynamic light scattering. J Phys 19:326102Google Scholar
  15. Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004a) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81:207–214PubMedCrossRefGoogle Scholar
  16. Cogdell RJ, Hashimoto H, Gardiner AT (2004b) Purple bacterial light-harvesting complexes: from dreams to structures. Photosynth Res 80:173–179PubMedCrossRefGoogle Scholar
  17. Collins AM, Qian P, Tang Q, Bocian DF, Hunter CN, Blankenship RE (2010) Light-harvesting antenna system from the phototrophic bacterium Roseiflexus castenholzii. Biochemistry 49:7524–7531PubMedCrossRefGoogle Scholar
  18. Crawford RK (1996) Gas detectors for neutrons. J Neutron Res 4:97–107CrossRefGoogle Scholar
  19. Deisenhofer J, Michel H (1989a) Nobel lecture. The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. EMBO J 8:2149–2170PubMedGoogle Scholar
  20. Deisenhofer J, Michel H (1989b) The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245:1463–1473PubMedCrossRefGoogle Scholar
  21. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 Å resolution. Nature 318:618–624CrossRefGoogle Scholar
  22. Deisenhofer J, Epp O, Sinning I, Michel H (1995) Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246:429–457PubMedCrossRefGoogle Scholar
  23. Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New YorkGoogle Scholar
  24. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New YorkGoogle Scholar
  25. Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35:327–367PubMedCrossRefGoogle Scholar
  26. Glatter O (1977) New method for evaluation of small-angle scattering data. J Appl Cryst 10:415–421CrossRefGoogle Scholar
  27. Hanada S, Pierson BK (2006) The family chloroflexaceae. The Prokaryotes, vol 7, 3rd edn. Springer, New York, pp 815–842Google Scholar
  28. Hansen JP, McDonald IR (1986) Theory of simple liquids. Academic Press, New YorkGoogle Scholar
  29. Hanson ET, Borsali R, Pecora R (2001) Dynamic light scattering and small-angle neutron scattering studies of ternary rod/coil/solvent systems. Macromolecules 34:2208–2219CrossRefGoogle Scholar
  30. Hoeppe G, Stewart J (2007) Why the sky is blue: discovering the color of life. Princeton University Press, PrincetonGoogle Scholar
  31. Hunter CN, Daldal F, Thurnauer MC, Beatty JT (2008) The purple phototrophic bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in photosynthesis and respiration, vol 28. Springer, Dordrecht, The NetherlandsGoogle Scholar
  32. Inomoto N, Osaka N, Suzuki T, Hasegawa U, Ozawa Y, Endo H, Akiyoshi K, Shibayama M (2009) Interaction of nanogel with cyclodextrin or protein: study by dynamic light scattering and small-angle neutron scattering. Polymer 50:541–546CrossRefGoogle Scholar
  33. Isaacs NW, Cogdell RJ, Freer AA, Prince SM (1995) Light-harvesting mechanisms in purple photosynthetic bacteria. Curr Opin Struct Biol 5:794–797PubMedCrossRefGoogle Scholar
  34. Jacrot B (1976) Study of biological structures by neutron-scattering from solution. Rep Prog Phys 39:911–953CrossRefGoogle Scholar
  35. Katoh T (1988) Phycobilisome stability. Meth Enzymol 167:313–318CrossRefGoogle Scholar
  36. Koch MH, Vachette P, Svergun DI (2003) Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q Rev Biophys 36:147–227PubMedCrossRefGoogle Scholar
  37. Lyklema J (2009) Simple Hofmeister series. Chem Phys Lett 467:217–222CrossRefGoogle Scholar
  38. Martinez-Planells A, Arellano JB, Borrego CM, Lopez-Iglesias C, Gich F, Garcia-Gil J (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90PubMedCrossRefGoogle Scholar
  39. Mears SJ, Cosgrove T, Obey T, Thompson L, Howell I (1998) Dynamic light scattering and small-angle neutron scattering studies on the poly(ethylene oxide)/sodium dodecyl sulfate/polystyrene latex system. Langmuir 14:4997–5003CrossRefGoogle Scholar
  40. Modesto-Lopez LB, Thimsen EJ, Collins AM, Blankenship RE, Biswas P (2010) Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy Environ Sci 3:216–222CrossRefGoogle Scholar
  41. Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003) Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565PubMedCrossRefGoogle Scholar
  42. Moore PB (1980) Small-angle scattering. Information content and error analysis. J Appl Cryst 13:168–175CrossRefGoogle Scholar
  43. Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 259–278Google Scholar
  44. Okabe S, Ando K, Hanabusa K, Shibayama M (2004) Dynamic light scattering and small-angle neutron scattering studies on organogels formed with a gelator. J Polym Sci A 42:1841–1848CrossRefGoogle Scholar
  45. Oostergetel GT, van Amerongen H, Boekema EJ (2010) The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth Res 104:245–255PubMedCrossRefGoogle Scholar
  46. Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538PubMedCrossRefGoogle Scholar
  47. Pecora R (1983) Quasi-elastic light scattering of macromolecules and particles in solution and suspension. In: Dahneke BE (ed) Measurement of suspended particles by quasi-elastic light scattering. Wiley, New York, pp 3–30Google Scholar
  48. Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struct Biol 17:562–571PubMedCrossRefGoogle Scholar
  49. Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24PubMedCrossRefGoogle Scholar
  50. Pierson BK, Thornber JP (1983) Isolation and spectral characterization of photochemical reaction centers from the thermophilic green bacterium Chloroflexus aurantiacus strain J-10-f1. Proc Natl Acad Sci USA 80:80–84PubMedCrossRefGoogle Scholar
  51. Price DL, Skold K (1986) Introduction to neutron scattering. In: Skold K, Price DL (eds) Methods of experimental physics, vol. 23 part a neutron scattering. Academic Press, Orlando, pp 1–97Google Scholar
  52. Prince SM, Howard TD, Myles DA, Wilkinson C, Papiz MZ, Freer AA, Cogdell RJ, Isaacs NW (2003) Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. J Mol Biol 326:307–315PubMedCrossRefGoogle Scholar
  53. Pšenčík J, Ikonen TP, Laurinmaki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172PubMedCrossRefGoogle Scholar
  54. Pšenčík J, Collins AM, Liljeroos L, Torkkeli M, Laurinmaki P, Ansink HM, Ikonen TP, Serimaa RE, Blankenship RE, Tuma R, Butcher SJ (2009) Structure of chlorosomes from the green filamentous bacterium Chloroflexus aurantiacus. J Bacteriol 191:6701–6708PubMedCrossRefGoogle Scholar
  55. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285PubMedCrossRefGoogle Scholar
  56. Rauch H, Waschkowski W (2000) 6. Neutron scattering lengths. In: Schopper H (ed) Low energy neutrons and their interaction with nuclei and matter. Part 1. SpringerMaterials—the Landolt-Börnstein DatabaseGoogle Scholar
  57. Romer S, Urban C, Lobaskin V, Scheffold F, Stradner A, Kohlbrecher J, Schurtenberger P (2003) Simultaneous light and small-angle neutron scattering on aggregating concentrated colloidal suspensions. J Appl Cryst 36:1–6CrossRefGoogle Scholar
  58. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of the RC–LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972PubMedCrossRefGoogle Scholar
  59. Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H, Frank HA (2004) Protein regulation of carotenoid binding; gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure 12:765–773PubMedCrossRefGoogle Scholar
  60. Roth M, Arnoux B, Ducruix A, Reiss-Husson F (1991) Structure of the detergent phase and protein-detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center. Biochemistry 30:9403–9413PubMedCrossRefGoogle Scholar
  61. Savage H, Cyrklaff M, Montoya G, Kuhlbrandt W, Sinning I (1996) Two-dimensional structure of light harvesting complex II (LHII) from the purple bacterium Rhodovulum sulfidophilum and comparison with LHII from Rhodopseudomonas acidophila. Structure 4:243–252PubMedCrossRefGoogle Scholar
  62. Sears VF (1986) Neutron scattering lengths and cross sections. In: Skoeld K, Price DL (eds) Methods of experimental physics, vol A23. New York, Academic Press, pp 521–550Google Scholar
  63. Sears VF (1989) Neutron optics, neutron scattering in condensed matter, vol 3. Oxford University Press, New YorkGoogle Scholar
  64. Shiozawa JA, Lottspeich F, Feick R (1987) The photochemical reaction center of Chloroflexus aurantiacus is composed of two structurally similar polypeptides. Eur J Biochem 167:595–600PubMedCrossRefGoogle Scholar
  65. Smith JC (1991) Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q Rev Biophys 24:227–291PubMedCrossRefGoogle Scholar
  66. Squires GL (1997) Introduction to the theory of thermal neutron scattering. Dover Publications, New YorkGoogle Scholar
  67. Sridharan A, Muthuswamy J, Labelle JT, Pizziconi VB (2008) Immobilization of functional light antenna structures derived from the filamentous green bacterium Chloroflexus aurantiacus. Langmuir 24:8078–8089PubMedCrossRefGoogle Scholar
  68. Staehelin LA, Golecki JR, Fuller RC, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277CrossRefGoogle Scholar
  69. Stowell MH, McPhillips TM, Rees DC, Soltis SM, Abresch E, Feher G (1997) Light-induced structural changes in photosynthetic reaction center: implications for mechanism of electron–proton transfer. Science 276:812–816PubMedCrossRefGoogle Scholar
  70. Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–1782CrossRefGoogle Scholar
  71. Svergun DI, Semenyuk AV, Feigin LA (1988) Small-angle scattering data treatment by the regularization method. Acta Crystallogr A 44:244–250CrossRefGoogle Scholar
  72. Svergun DI, Pedersen JS, Serdyuk IN, Koch MH (1994) Solution scattering from 50S ribosomal subunit resolves inconsistency between electron microscopic models. Proc Natl Acad Sci USA 91:11826–11830PubMedCrossRefGoogle Scholar
  73. Tang KH, Tsai MD (2008) Structure and function of 2:1 DNA polymerase.DNA complexes. J Cell Physiol 216:315–320PubMedCrossRefGoogle Scholar
  74. Tang KH, Guo H, Yi W, Tsai MD, Wang PG (2007) Investigation of the conformational states of Wzz and the Wzz.O-antigen complex under near-physiological conditions. Biochemistry 46:11744–11752PubMedCrossRefGoogle Scholar
  75. Tang KH, Niebuhr M, Aulabaugh A, Tsai MD (2008a) Solution structures of 2:1 and 1:1 DNA polymerase–DNA complexes probed by ultracentrifugation and small-angle X-ray scattering. Nucleic Acids Res 36:849–860PubMedCrossRefGoogle Scholar
  76. Tang KH, Niebuhr M, Tung CS, Chan HC, Chou CC, Tsai MD (2008b) Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways. Nucleic Acids Res 36:2948–2957PubMedCrossRefGoogle Scholar
  77. Tang KH, Urban VS, Wen J, Xin Y, Blankenship RE (2010) SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus. Biophys J 99:2398–2407PubMedCrossRefGoogle Scholar
  78. Tang KH, Zhu L, Urban VS, Collins AM, Biswas P, Blankenship RE (2011) Temperature and ionic strength effects on the light-harvesting antenna complex chlorosomes. Langmuir 27:4816–4828PubMedCrossRefGoogle Scholar
  79. Taylor A, Dunne M, Bennington S, Ansell S, Gardner I, Norreys P, Broome T, Findlay D, Nelmes R (2007) A route to the brightest possible neutron source? Science 315:1092–1095PubMedCrossRefGoogle Scholar
  80. Tiede DM, Thiyagarajan P (1996) Characterization of photosynthetic supramolecular assemblies using small angle neutron scattering. In: Amez J, Hoff A (eds) Biophysical techniques in photosynthesis, vol 3. Kluwer Academic Publication, Dordrecht, The Netherlands, pp 375–390CrossRefGoogle Scholar
  81. Tiede DM, Littrell K, Maronea PA, Zhanga R, Thiyagarajan P (2000) Solution structure of a biological bimolecular electron transfer complex: characterization of the photosynthetic reaction center-cytochrome c2 protein complex by small angle neutron scattering. J Appl Cryst 33:560–564CrossRefGoogle Scholar
  82. Vachette P, Koch MHJ, Svergun DI (2003) Looking behind the beamstop: X-ray solution scattering studies of structure and conformational changes of biological macromolecules. Macromol Crystallogr D 374:584–615CrossRefGoogle Scholar
  83. Wang ZY, Umetsu M, Yoza K, Kobayashi M, Imai M, Matsushita Y, Niimura N, Nozawa T (1997) A small-angle neutron scattering study on the small aggregates of bacteriochlorophylls in solutions. Biochim Biophys Acta 1320:73–82CrossRefGoogle Scholar
  84. Wang ZY, Muraoka Y, Nagao M, Shibayama M, Kobayashi M, Nozawa T (2003) Determination of the B820 subunit size of a bacterial core light-harvesting complex by small-angle neutron scattering. Biochemistry 42:11555–11560PubMedCrossRefGoogle Scholar
  85. Wechsler TD, Brunisholz RA, Frank G, Suter F, Zuber H (1987) The complete amino acid sequence of the antenna polypeptide B806-866-beta from the cytoplasmic membrane of the green bacterium Chloroflexus aurantiacus. FEBS Lett 210:189–194CrossRefGoogle Scholar
  86. Worcester DL, Michalski TJ, Katz JJ (1986) Small-angle neutron scattering studies of chlorophyll micelles: models for bacterial antenna chlorophyll. Proc Natl Acad Sci USA 83:3791–3795PubMedCrossRefGoogle Scholar
  87. Worcester DL, Michalski TJ, Tyson RL, Bowman MK, Katz JJ (1989) Structure, red-shifted absorption and electron-transport properties of specific aggregates of chlorophylls. Physica B 156:502–504CrossRefGoogle Scholar
  88. Yajima H, Yamamoto H, Nagaoka M, Nakazato K, Ishii T, Niimura N (1998) Small-angle neutron scattering and dynamic light scattering studies of N- and C-terminal fragments of ovotransferrin. Biochim Biophys Acta 1381:68–76PubMedCrossRefGoogle Scholar
  89. Zhang Y, Cremer PS (2010) Chemistry of Hofmeister anions and osmolytes. Annu Rev Phys Chem 61:63–83PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Biology and Department of ChemistryWashington University in St. LouisSt. LouisUSA

Personalised recommendations