Photosynthesis Research

, Volume 109, Issue 1–3, pp 191–203 | Cite as

Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration

  • Yusuke Matsuda
  • Kensuke Nakajima
  • Masaaki Tachibana


Marine diatoms, the major primary producer in ocean environment, are known to take up both CO2 and HCO3 in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO2. However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO2 and HCO3 as inorganic forms, and efficiently supply CO2 to Rubisco by an aid of carbonic anhydrases (biophysical CO2-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO3 into C4 compounds may play a major role to supply concentrated CO2 to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO2 acquisition systems in response to changes in pCO2. Recent findings about the participation of cAMP in the signaling pathway of CO2 concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO2. In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO2 signal capturing.


Marine diatoms CO2 HCO3 transport Carbonic anhydrase Localization cAMP 



We thank Ms. Nobuko Higashiuchi for her technical assistance and Ms. Miyabi Inoue for her skilful secretarial aid. This research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Kwansei-Gakuin University, Research Center for Environmental Bioscience), and by Steel Industry Foundation for the Advancement of Environmental Protection Technology (to Y. M.).


  1. Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071Google Scholar
  2. Beardall J, Mukerji D, Glover HE, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417Google Scholar
  3. Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  4. Bozzo GG, Colman B (2000) The induction of inorganic carbon transport and external carbonic anhydrase in Chlamydomonas reinhardtii is regulated by external CO2 concentration. Plant Cell Environ 23:1137–1144CrossRefGoogle Scholar
  5. Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84PubMedCrossRefGoogle Scholar
  6. Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391CrossRefGoogle Scholar
  7. Cann MJ, Hammer A, Zhou J, Kanacher T (2003) A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J Biol Chem 278:35033–35038PubMedCrossRefGoogle Scholar
  8. Carré IA, Edmunds LN Jr (1993) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104:1163–1173PubMedGoogle Scholar
  9. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628PubMedCrossRefGoogle Scholar
  10. Chen X, Qiu CE, Shao JZ (2006) Evidence for K+-dependent HCO3 utilization in the marine diatom Phaeodactylum tricornutum. Plant Physiol 141:731–736PubMedCrossRefGoogle Scholar
  11. Coleman JR, Colman B (1981) Photosynthetic carbon assimilation in the blue-green alga Coccochloris peniosystis. Plant Cell Environ 4:285–290Google Scholar
  12. Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924CrossRefGoogle Scholar
  13. Colman B, Rotatore C (1988) Uptake and accumulation of inorganic carbon by a freshwater diatom. J Exp Bot 39:1025–1032CrossRefGoogle Scholar
  14. Colman B, Huertus IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270CrossRefGoogle Scholar
  15. Dionisio-Sese ML, Fukuzawa H, Miyachi S (1990) Light-Induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol 94:1103–1110PubMedCrossRefGoogle Scholar
  16. Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384PubMedCrossRefGoogle Scholar
  17. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206PubMedCrossRefGoogle Scholar
  18. Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högbeg P, Linder S et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296PubMedCrossRefGoogle Scholar
  19. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedCrossRefGoogle Scholar
  20. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedCrossRefGoogle Scholar
  21. Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98:5347–5352PubMedCrossRefGoogle Scholar
  22. Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244PubMedCrossRefGoogle Scholar
  23. Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99CrossRefGoogle Scholar
  24. Hammer A, Hodgson DR, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396:215–218PubMedCrossRefGoogle Scholar
  25. Harada H, Matsuda Y (2005) Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Can J Bot 83:909–916CrossRefGoogle Scholar
  26. Harada H, Nakatsuma D, Ishida M, Matsuda Y (2005) Regulation of the expression of intracellular β-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum. Plant Physiol 139:1041–1050PubMedCrossRefGoogle Scholar
  27. Harada H, Nakajima K, Sakaue K, Matsuda Y (2006) CO2 sensing at ocean surface mediated by cAMP in a marine diatom. Plant Physiol 142:1318–1328PubMedCrossRefGoogle Scholar
  28. Holdsworth ES, Colbeck J (1976) The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar Biol 38:189–199CrossRefGoogle Scholar
  29. Iglesias-Rodriguez MD, Merrett MJ (1997) Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum. New Phytol 135:163–168CrossRefGoogle Scholar
  30. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051PubMedCrossRefGoogle Scholar
  31. Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290CrossRefGoogle Scholar
  32. Kanacher T, Schultz A, Linder JU, Schultz JE (2002) A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch. EMBO J 21:3672–3680PubMedCrossRefGoogle Scholar
  33. Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216PubMedCrossRefGoogle Scholar
  34. Kitao Y, Harada H, Matsuda Y (2008) Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum. Physiol Plant 133:68–77PubMedCrossRefGoogle Scholar
  35. Kitao Y, Matsuda Y (2009) Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 419:681–688PubMedCrossRefGoogle Scholar
  36. Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Mühlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026PubMedCrossRefGoogle Scholar
  37. Kohinata T, Nishino H, Fukuzawa H (2008) Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 49:273–283PubMedCrossRefGoogle Scholar
  38. Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatom. J Phycol 33:433–440CrossRefGoogle Scholar
  39. Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426PubMedCrossRefGoogle Scholar
  40. Kuchitsu K, Tsuzuki M, Miyachi S (1991) Polypeptide composition and enzyme activities of the pyrenoid and its regulation by CO2 concentration in unicellular green algae. Can J Bot 69:1062–1069CrossRefGoogle Scholar
  41. Kucho K, Ohyama K, Fukuzawa H (1999) CO2-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121:1329–1337PubMedCrossRefGoogle Scholar
  42. Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plnat Physiol 133:783–793CrossRefGoogle Scholar
  43. Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631PubMedCrossRefGoogle Scholar
  44. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from marine diatom. Nature 435:42PubMedCrossRefGoogle Scholar
  45. Litchman E, Klausmeier CA, Yoshiyama K (2009) Contrasting size evolution in marine and freshwater diatoms. Proc Natl Acad Sci USA 106:2665–2670PubMedCrossRefGoogle Scholar
  46. Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20CrossRefGoogle Scholar
  47. Marcus Y, Harel E, Kaplan A (1983) Adaptation of the cyanobacterium Anabaena variabilis to low CO2 concentration in their environment. Plant Physiol 71:208–210PubMedCrossRefGoogle Scholar
  48. Masuda S, Ono TA (2005) Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. srain PCC6803 inhibited by bicarbonate. J Bacteriol 187:5032–5035PubMedCrossRefGoogle Scholar
  49. Matsuda Y, Colman B (1995a) Induction of CO2 and bicarbonate transport in green alga Chlorella ellipsoidea. I Time course of induction of two systems. Plant Physiol 108:247–252PubMedGoogle Scholar
  50. Matsuda Y, Colman B (1995b) Induction of CO2 and bicarbonate transport in green alga Chlorella ellipsoidea. II Evidence for induction in response to external CO2 concentration. Plant Physiol 108:253–260PubMedGoogle Scholar
  51. Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom Phaeodactylum tricornutum. Plant Cell Environ 24:611–620CrossRefGoogle Scholar
  52. Mayo WP, Williams TG, Birch DG, Turpin DH (1986) Photosynthetic adaptation by Synechococcus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiol 80:1038–1040PubMedCrossRefGoogle Scholar
  53. McFadden GI, Gilson P (1995) Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10:12–17PubMedCrossRefGoogle Scholar
  54. McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309PubMedCrossRefGoogle Scholar
  55. Miller AG, Espie GS, Canvin DT (1990) Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review. Can J Bot 68:1291–1302CrossRefGoogle Scholar
  56. Mitchell C, Beardall J (1996) Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biol 16:95–99CrossRefGoogle Scholar
  57. Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV (2004) Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 135:173–182PubMedCrossRefGoogle Scholar
  58. Miura K, Kohinata T, Yoshioka S, Ohyama K, Fukuzawa H (2002) Regulation of a carbon concentrating mechanism through CCM1 in Chlamydomonas reinhardtii. Funct Plant Biol 29:211–219CrossRefGoogle Scholar
  59. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607PubMedCrossRefGoogle Scholar
  60. Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513PubMedCrossRefGoogle Scholar
  61. Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726PubMedCrossRefGoogle Scholar
  62. Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda S, Omata T (2008) Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 68:98–109PubMedCrossRefGoogle Scholar
  63. Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898PubMedCrossRefGoogle Scholar
  64. Patel BN, Merrett MJ (1986) Inorganic-carbon uptake by the marine diatom Phaeodactylum tricornutum. Planta 169:222–227CrossRefGoogle Scholar
  65. Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461PubMedCrossRefGoogle Scholar
  66. Pronina NA, Semenenko VE (1984) Localization of membrane-bound and soluble forms of carbonic anhydrase in the Chlorella cell. Fiziol Rast (Moscow) 31:241–251Google Scholar
  67. Quarmby LM (1994) Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol 26:1271–1287PubMedCrossRefGoogle Scholar
  68. Raven JA (1994) Carbon fixation and carbon availability in marine phytoplankton. Photosynth Res 39:259–273CrossRefGoogle Scholar
  69. Raven JA (1997) CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154CrossRefGoogle Scholar
  70. Rawat M, Moroney JV (1995) The regulation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase activase by light and CO2 in Chlamydomonas reinhardtii. Plant Physiol 109:937–944PubMedGoogle Scholar
  71. Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999PubMedCrossRefGoogle Scholar
  72. Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111PubMedCrossRefGoogle Scholar
  73. Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850CrossRefGoogle Scholar
  74. Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235PubMedCrossRefGoogle Scholar
  75. Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67CrossRefGoogle Scholar
  76. Rotatore C, Colman B (1992) Active uptake of CO2 by the diatom Navicula pelliculosa. J Exp Bot 249:571–576CrossRefGoogle Scholar
  77. Rotatore C, Colman B, Kuzuma M (1995) The active uptake of carbon dioxide by the marine diatoms Phaeodactylum triconrutum and Cyclotella sp. Plant cell Environ 18:913–918CrossRefGoogle Scholar
  78. Satoh D, Hiraoka Y, Colman B, Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Pysiol 126:1459–1470CrossRefGoogle Scholar
  79. Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7547PubMedCrossRefGoogle Scholar
  80. So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630PubMedCrossRefGoogle Scholar
  81. Sültemeyer DF (1998) Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis. Can J Bot 76:962–972Google Scholar
  82. Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active CO2 transport. Can J Bot 69:995–1002CrossRefGoogle Scholar
  83. Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth ResGoogle Scholar
  84. Tanaka Y, Nakatsuma D, Harada H, Ishida M, Matsuda Y (2005) Localization of soluble β-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol 138:207–217PubMedCrossRefGoogle Scholar
  85. Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganism. Curr Biol 7:723–728PubMedCrossRefGoogle Scholar
  86. Terauchi K, Ohmori M (2004) Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 52:303–309PubMedCrossRefGoogle Scholar
  87. Tréguer P, Nelson DM, Van Bennekom AJ, Demaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379PubMedCrossRefGoogle Scholar
  88. Trimborn S, Lundholm N, Thomas S, Richter KU, Krock B, Hansen PJ, Rost B (2008) Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant 133:92–105PubMedCrossRefGoogle Scholar
  89. Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618PubMedCrossRefGoogle Scholar
  90. Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120:757–764PubMedCrossRefGoogle Scholar
  91. Vance P, Spalding MH (2005) Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can J Bot 83:796–809Google Scholar
  92. Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751PubMedCrossRefGoogle Scholar
  93. Wang Y, Sun Z, Horken KM, Im CS, Xiang Y, Grossman AR, Weeks DP (2005) Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its control of gene expression. Can J Bot 83:765–779CrossRefGoogle Scholar
  94. Woodger FJ, Bryant DA MR, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347PubMedCrossRefGoogle Scholar
  95. Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 98:5341–5346PubMedCrossRefGoogle Scholar
  96. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61PubMedCrossRefGoogle Scholar
  97. Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354PubMedCrossRefGoogle Scholar
  98. Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2 dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Yusuke Matsuda
    • 1
  • Kensuke Nakajima
    • 1
  • Masaaki Tachibana
    • 1
  1. 1.Department of Bioscience, Research Center for Environmental BioscienceKwansei-Gakuin UniversitySandaJapan

Personalised recommendations