Skip to main content

Advertisement

Log in

Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Marine diatoms, the major primary producer in ocean environment, are known to take up both CO2 and HCO3 in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO2. However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO2 and HCO3 as inorganic forms, and efficiently supply CO2 to Rubisco by an aid of carbonic anhydrases (biophysical CO2-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO3 into C4 compounds may play a major role to supply concentrated CO2 to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO2 acquisition systems in response to changes in pCO2. Recent findings about the participation of cAMP in the signaling pathway of CO2 concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO2. In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO2 signal capturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, Price GD (1998) The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Beardall J, Mukerji D, Glover HE, Morris I (1976) The path of carbon in photosynthesis by marine phytoplankton. J Phycol 12:409–417

    CAS  Google Scholar 

  • Bowler C et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244

    Article  PubMed  CAS  Google Scholar 

  • Bozzo GG, Colman B (2000) The induction of inorganic carbon transport and external carbonic anhydrase in Chlamydomonas reinhardtii is regulated by external CO2 concentration. Plant Cell Environ 23:1137–1144

    Article  CAS  Google Scholar 

  • Buck J, Sinclair ML, Schapal L, Cann MJ, Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc Natl Acad Sci USA 96:79–84

    Article  PubMed  CAS  Google Scholar 

  • Burkhardt S, Amoroso G, Riebesell U, Sültemeyer D (2001) CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. Limnol Oceanogr 46:1378–1391

    Article  CAS  Google Scholar 

  • Cann MJ, Hammer A, Zhou J, Kanacher T (2003) A defined subset of adenylyl cyclases is regulated by bicarbonate ion. J Biol Chem 278:35033–35038

    Article  PubMed  CAS  Google Scholar 

  • Carré IA, Edmunds LN Jr (1993) Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. J Cell Sci 104:1163–1173

    PubMed  Google Scholar 

  • Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625–628

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Qiu CE, Shao JZ (2006) Evidence for K+-dependent HCO3 utilization in the marine diatom Phaeodactylum tricornutum. Plant Physiol 141:731–736

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR, Colman B (1981) Photosynthetic carbon assimilation in the blue-green alga Coccochloris peniosystis. Plant Cell Environ 4:285–290

    CAS  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ 18:919–924

    Article  CAS  Google Scholar 

  • Colman B, Rotatore C (1988) Uptake and accumulation of inorganic carbon by a freshwater diatom. J Exp Bot 39:1025–1032

    Article  CAS  Google Scholar 

  • Colman B, Huertus IE, Bhatti S, Dason JS (2002) The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct Plant Biol 29:261–270

    Article  CAS  Google Scholar 

  • Dionisio-Sese ML, Fukuzawa H, Miyachi S (1990) Light-Induced carbonic anhydrase expression in Chlamydomonas reinhardtii. Plant Physiol 94:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Dou Z, Heinhorst S, Williams EB, Murin CD, Shively JM, Cannon GC (2008) CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. J Biol Chem 283:10377–10384

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  PubMed  CAS  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högbeg P, Linder S et al (2000) The global carbon cycle: a test of our knowledge of Earth as a system. Science 290:291–296

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98:5347–5352

    Article  PubMed  CAS  Google Scholar 

  • Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244

    Article  PubMed  CAS  Google Scholar 

  • Gibbs SP (1981) The chloroplast endoplasmic reticulum: structure, function and evolutionary significance. Int Rev Cytol 72:49–99

    Article  Google Scholar 

  • Hammer A, Hodgson DR, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO2. Biochem J 396:215–218

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Matsuda Y (2005) Identification and characterization of a new carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Can J Bot 83:909–916

    Article  CAS  Google Scholar 

  • Harada H, Nakatsuma D, Ishida M, Matsuda Y (2005) Regulation of the expression of intracellular β-carbonic anhydrase in response to CO2 and light in the marine diatom Phaeodactylum tricornutum. Plant Physiol 139:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Nakajima K, Sakaue K, Matsuda Y (2006) CO2 sensing at ocean surface mediated by cAMP in a marine diatom. Plant Physiol 142:1318–1328

    Article  PubMed  CAS  Google Scholar 

  • Holdsworth ES, Colbeck J (1976) The pattern of carbon fixation in the marine unicellular alga Phaeodactylum tricornutum. Mar Biol 38:189–199

    Article  CAS  Google Scholar 

  • Iglesias-Rodriguez MD, Merrett MJ (1997) Dissolved inorganic carbon utilization and the development of extracellular carbonic anhydrase by the marine diatom Phaeodactylum tricornutum. New Phytol 135:163–168

    Article  CAS  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Johnston AM, Raven JA (1996) Inorganic carbon accumulation by the marine diatom Phaeodactylum tricornutum. Eur J Phycol 31:285–290

    Article  Google Scholar 

  • Kanacher T, Schultz A, Linder JU, Schultz JE (2002) A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch. EMBO J 21:3672–3680

    Article  PubMed  CAS  Google Scholar 

  • Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD, Moroney JV, Samuelsson G (1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J 17:1208–1216

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Harada H, Matsuda Y (2008) Localization and targeting mechanisms of two chloroplastic beta-carbonic anhydrases in the marine diatom Phaeodactylum tricornutum. Physiol Plant 133:68–77

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Matsuda Y (2009) Formation of macromolecular complexes of carbonic anhydrases in the chloroplast of a marine diatom by the action of the C-terminal helix. Biochem J 419:681–688

    Article  PubMed  CAS  Google Scholar 

  • Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, Levin LR, Buck J, Mühlschlegel FA (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026

    Article  PubMed  CAS  Google Scholar 

  • Kohinata T, Nishino H, Fukuzawa H (2008) Significance of zinc in a regulatory protein, CCM1, which regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 49:273–283

    Article  PubMed  CAS  Google Scholar 

  • Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatom. J Phycol 33:433–440

    Article  CAS  Google Scholar 

  • Kroth PG et al (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 3:e1426

    Article  PubMed  Google Scholar 

  • Kuchitsu K, Tsuzuki M, Miyachi S (1991) Polypeptide composition and enzyme activities of the pyrenoid and its regulation by CO2 concentration in unicellular green algae. Can J Bot 69:1062–1069

    Article  CAS  Google Scholar 

  • Kucho K, Ohyama K, Fukuzawa H (1999) CO2-responsive transcriptional regulation of CAH1 encoding carbonic anhydrase is mediated by enhancer and silencer regions in Chlamydomonas reinhardtii. Plant Physiol 121:1329–1337

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Yoshioka S, Taniguchi F, Ohyama K, Fukuzawa H (2003) Cis-acting elements and DNA-binding proteins involved in CO2-responsive transcriptional activation of Cah1 encoding a periplasmic carbonic anhydrase in Chlamydomonas reinhardtii. Plnat Physiol 133:783–793

    Article  CAS  Google Scholar 

  • Lane TW, Morel FMM (2000) A biological function for cadmium in marine diatoms. Proc Natl Acad Sci USA 97:4627–4631

    Article  PubMed  CAS  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from marine diatom. Nature 435:42

    Article  PubMed  CAS  Google Scholar 

  • Litchman E, Klausmeier CA, Yoshiyama K (2009) Contrasting size evolution in marine and freshwater diatoms. Proc Natl Acad Sci USA 106:2665–2670

    Article  PubMed  CAS  Google Scholar 

  • Ludwig M, Gibbs SP (1985) DNA is present in the nucleomorph of cryptomonads: further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma 127:9–20

    Article  Google Scholar 

  • Marcus Y, Harel E, Kaplan A (1983) Adaptation of the cyanobacterium Anabaena variabilis to low CO2 concentration in their environment. Plant Physiol 71:208–210

    Article  PubMed  CAS  Google Scholar 

  • Masuda S, Ono TA (2005) Adenylyl cyclase activity of Cya1 from the cyanobacterium Synechocystis sp. srain PCC6803 inhibited by bicarbonate. J Bacteriol 187:5032–5035

    Article  PubMed  CAS  Google Scholar 

  • Matsuda Y, Colman B (1995a) Induction of CO2 and bicarbonate transport in green alga Chlorella ellipsoidea. I Time course of induction of two systems. Plant Physiol 108:247–252

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Colman B (1995b) Induction of CO2 and bicarbonate transport in green alga Chlorella ellipsoidea. II Evidence for induction in response to external CO2 concentration. Plant Physiol 108:253–260

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Hara T, Colman B (2001) Regulation of the induction of bicarbonate uptake by dissolved CO2 in the marine diatom Phaeodactylum tricornutum. Plant Cell Environ 24:611–620

    Article  CAS  Google Scholar 

  • Mayo WP, Williams TG, Birch DG, Turpin DH (1986) Photosynthetic adaptation by Synechococcus leopoliensis in response to exogenous dissolved inorganic carbon. Plant Physiol 80:1038–1040

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI, Gilson P (1995) Something borrowed, something green: lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10:12–17

    Article  PubMed  CAS  Google Scholar 

  • McGinn PJ, Morel FMM (2008) Expression and inhibition of the carboxylating and decarboxylating enzymes in the photosynthetic C4 pathway of marine diatoms. Plant Physiol 146:300–309

    Article  PubMed  CAS  Google Scholar 

  • Miller AG, Espie GS, Canvin DT (1990) Physiological aspects of CO2 and HCO3 transport by cyanobacteria: a review. Can J Bot 68:1291–1302

    Article  CAS  Google Scholar 

  • Mitchell C, Beardall J (1996) Inorganic carbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biol 16:95–99

    Article  Google Scholar 

  • Mitra M, Lato SM, Ynalvez RA, Xiao Y, Moroney JV (2004) Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 135:173–182

    Article  PubMed  CAS  Google Scholar 

  • Miura K, Kohinata T, Yoshioka S, Ohyama K, Fukuzawa H (2002) Regulation of a carbon concentrating mechanism through CCM1 in Chlamydomonas reinhardtii. Funct Plant Biol 29:211–219

    Article  CAS  Google Scholar 

  • Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda S, Omata T (2008) Mechanism of low CO2-induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 68:98–109

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898

    Article  PubMed  CAS  Google Scholar 

  • Patel BN, Merrett MJ (1986) Inorganic-carbon uptake by the marine diatom Phaeodactylum tricornutum. Planta 169:222–227

    Article  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  PubMed  CAS  Google Scholar 

  • Pronina NA, Semenenko VE (1984) Localization of membrane-bound and soluble forms of carbonic anhydrase in the Chlorella cell. Fiziol Rast (Moscow) 31:241–251

    CAS  Google Scholar 

  • Quarmby LM (1994) Signal transduction in the sexual life of Chlamydomonas. Plant Mol Biol 26:1271–1287

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1994) Carbon fixation and carbon availability in marine phytoplankton. Photosynth Res 39:259–273

    Article  CAS  Google Scholar 

  • Raven JA (1997) CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ 20:147–154

    Article  CAS  Google Scholar 

  • Rawat M, Moroney JV (1995) The regulation of carbonic anhydrase and ribulose-1, 5-bisphosphate carboxylase/oxygenase activase by light and CO2 in Chlamydomonas reinhardtii. Plant Physiol 109:937–944

    PubMed  CAS  Google Scholar 

  • Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407:996–999

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Milligan AJ, Morel FMM (2004) The role of the C4 pathway in carbon accumulation and fixation in a marine diatom. Plant Physiol 135:2106–2111

    Article  PubMed  CAS  Google Scholar 

  • Roberts SB, Lane TW, Morel FMM (1997) Carbonic anhydrase in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J Phycol 33:845–850

    Article  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental, control. Plant Physiol 145:230–235

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S, Sültemeyer D (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Rotatore C, Colman B (1992) Active uptake of CO2 by the diatom Navicula pelliculosa. J Exp Bot 249:571–576

    Article  Google Scholar 

  • Rotatore C, Colman B, Kuzuma M (1995) The active uptake of carbon dioxide by the marine diatoms Phaeodactylum triconrutum and Cyclotella sp. Plant cell Environ 18:913–918

    Article  CAS  Google Scholar 

  • Satoh D, Hiraoka Y, Colman B, Matsuda Y (2001) Physiological and molecular biological characterization of intracellular carbonic anhydrase from the marine diatom Phaeodactylum tricornutum. Plant Pysiol 126:1459–1470

    Article  CAS  Google Scholar 

  • Sawaya MR, Cannon GC, Heinhorst S, Tanaka S, Williams EB, Yeates TO, Kerfeld CA (2006) The structure of beta-carbonic anhydrase from the carboxysomal shell reveals a distinct subclass with one active site for the price of two. J Biol Chem 281:7546–7547

    Article  PubMed  CAS  Google Scholar 

  • So AK, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC (2004) A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. J Bacteriol 186:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sültemeyer DF (1998) Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis. Can J Bot 76:962–972

    Google Scholar 

  • Sültemeyer DF, Fock HP, Canvin DT (1991) Active uptake of inorganic carbon by Chlamydomonas reinhardtii: evidence for simultaneous transport of HCO3 and CO2 and characterization of active CO2 transport. Can J Bot 69:995–1002

    Article  Google Scholar 

  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y (2011) Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res

  • Tanaka Y, Nakatsuma D, Harada H, Ishida M, Matsuda Y (2005) Localization of soluble β-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae. Plant Physiol 138:207–217

    Article  PubMed  CAS  Google Scholar 

  • Tchernov D, Hassidim M, Luz B, Sukenik A, Reinhold L, Kaplan A (1997) Sustained net CO2 evolution during photosynthesis by marine microorganism. Curr Biol 7:723–728

    Article  PubMed  CAS  Google Scholar 

  • Terauchi K, Ohmori M (2004) Blue light stimulates cyanobacterial motility via a cAMP signal transduction system. Mol Microbiol 52:303–309

    Article  PubMed  CAS  Google Scholar 

  • Tréguer P, Nelson DM, Van Bennekom AJ, Demaster DJ, Leynaert A, Quéguiner B (1995) The silica balance in the world ocean: a reestimate. Science 268:375–379

    Article  PubMed  Google Scholar 

  • Trimborn S, Lundholm N, Thomas S, Richter KU, Krock B, Hansen PJ, Rost B (2008) Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant 133:92–105

    Article  PubMed  CAS  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  PubMed  CAS  Google Scholar 

  • Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol 120:757–764

    Article  PubMed  CAS  Google Scholar 

  • Vance P, Spalding MH (2005) Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can J Bot 83:796–809

    Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Sun Z, Horken KM, Im CS, Xiang Y, Grossman AR, Weeks DP (2005) Analyses of CIA5, the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its control of gene expression. Can J Bot 83:765–779

    Article  CAS  Google Scholar 

  • Woodger FJ, Bryant DA MR, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating mechanism in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 98:5341–5346

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FMM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452:56–61

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:340–354

    Article  PubMed  CAS  Google Scholar 

  • Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and low-CO2 dependent LCIB-LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol 51:1453–1468

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Nobuko Higashiuchi for her technical assistance and Ms. Miyabi Inoue for her skilful secretarial aid. This research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (to Kwansei-Gakuin University, Research Center for Environmental Bioscience), and by Steel Industry Foundation for the Advancement of Environmental Protection Technology (to Y. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, Y., Nakajima, K. & Tachibana, M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res 109, 191–203 (2011). https://doi.org/10.1007/s11120-011-9623-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9623-7

Keywords

Navigation