Skip to main content

Advertisement

Log in

Fluorescence measurement by a streak camera in a single-photon-counting mode

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We describe here a recently developed fluorescence measurement system that uses a streak camera to detect fluorescence decay in a single photon-counting mode. This system allows for easy measurements of various samples and provides 2D images of fluorescence in the wavelength and time domains. The great advantage of the system is that the data can be handled with ease; furthermore, the data are amenable to detailed analysis. We describe the picosecond kinetics of fluorescence in spinach Photosystem (PS) II particles at 4–77 K as a typical experimental example. Through the global analysis of the data, we have identified a new fluorescence band (F689) in addition to the already established F680, F685, and F695 emission bands. The blue shift of the steady-state fluorescence spectrum upon cooling below 77 K can be interpreted as an increase of the shorter-wavelength fluorescence, especially F689, due to the slowdown of the excitation energy transfer process. The F685 and F695 bands seem to be thermally equilibrated at 77 K but not at 4 K. The simple and efficient photon accumulation feature of the system allows us to measure fluorescence from leaves, solutions, single colonies, and even single cells. The 2D fluorescence images obtained by this system are presented for isolated spinach PS II particles, intact leaves of Arabidopsis thaliana, the PS I super-complex of a marine centric diatom, Chaetoceros gracilis, isolated membranes of a purple photosynthetic bacterium, Acidiphilium rubrum, which contains Zn-BChl a, and a coral that contains a green fluorescent protein and an algal endosymbiont, Zooxanthella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CCD:

Charge coupled device

DAS:

Decay-associated spectrum

EET:

Excitation energy transfer

F685, F695 and F735:

Fluorescence bands peaking at 685, 695, and 735 nm respectively

LHC:

Light-harvesting chlorophyll a/b binding complex

MCP:

Multichannel plate

P680:

Primary electron donor in PS II

PS:

Photosystem

RC:

Reaction center

References

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Ǻ resolution. Nature 447:58–63

    Article  PubMed  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Frolov D, van Grondelle R, Dekker JP (2004) On the role of the CP47 core antenna in the energy transfer and trapping dynamics of photosystem II. Phys Chem Chem Phys 6:4810–4819

    Article  CAS  Google Scholar 

  • Andrizhiyevskaya EG, Chojnicka A, Bautista JA, Diner BA, van Grondelle R, Dekker P (2005) Origin of the F685 and F695 fluorescence in photosystem II. Photosynth Res 84:173–180

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron-transport properties. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Boekema EJ, van Roon H, Calkoen F, Bassi R, Dekker JP (1999) Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38:2233–2239

    Article  PubMed  CAS  Google Scholar 

  • Brody SS, Brody M (1963) Aggregated chlorophyll in vivo. Natl Acad Sci-Natl Res Council Publ 1145:455–478

    Google Scholar 

  • Broess K, Trinkunas G, van der Weij-de Wit CD, Dekker JP, van Hoek A, van Amerongen H (2006) Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 91:3776–3786

    Article  PubMed  CAS  Google Scholar 

  • Cho F, Govindjee (1970a) Low temperature (4–77 K) spectroscopy of Chlorella: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216:139–150

    Article  PubMed  CAS  Google Scholar 

  • Cho F, Govindjee (1970b) Low temperature (4–77 K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216:151–161

    Article  PubMed  CAS  Google Scholar 

  • Cho F, Spencer J, Govindjee (1966) Emission spectra of Chlorella at very low temperatures (−269 to −196°C). Biochim Biophys Acta 126:174–176

    Article  PubMed  CAS  Google Scholar 

  • Croce R, Dorra D, Holzwarth AR, Jennings RC (2000) Fluorescence decay and spectral evolution in intact photosystem I of higher plants. Biochemistry 39:6341–6348

    Article  PubMed  CAS  Google Scholar 

  • De Weerd FL, Palacios MA, Andrizhiyevskaya EG, Dekker JP, Van Grondelle R (2002a) Identifying the lowest electronic states of the chlorophylls in the CP47 core antenna protein of photosystem II. Biochemistry 41:15224–15233

    Article  PubMed  Google Scholar 

  • De Weerd FL, van Stokkum IHM, van Amerongen H, Dekker JP, Van Grondelle R (2002b) Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II. Biophys J 82:1586–1597

    Article  PubMed  Google Scholar 

  • Dekker JP, van Grondelle R (2001) Primary charge separation in photosystem II. Photosynth Res 63:195–208

    Article  Google Scholar 

  • Dekker JP, Jassoldt A, Pettersson A, van Roon H, Groot ML, van Grondelle R (1995) On the nature of the F695 and F685 emission of photosystem II. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 1. Kluwer, Dordrecht, pp 53–56

    Google Scholar 

  • Domonkos I, Malec P, Sallai A, Kovács L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134:1471–1478

    Article  PubMed  CAS  Google Scholar 

  • Fleming GR, Morris JM, Robinson GW (1977) Picosecond fluorescence spectroscopy with a streak camera. Austr J Chem 30:2338–2352

    Google Scholar 

  • Fukushima Y, Okajima K, Shibata Y, Ikeuchi M, Itoh S (2005) Primary intermediate in the photocycle of a blue-light sensory BLUF FAD-protein, Tll0078, of Thermosynechococcus elongatus BP-1. Biochemistry 44:5149–5158

    Article  PubMed  CAS  Google Scholar 

  • Gasanov R, Abilov ZK, Gazanchyan RM, Kurbonova UM, Khanna R, Govindjee (1979) Excitation-energy transfer in photosystem-I and photosystem-II from grana and in photosystem-I from stroma lamellae, and identification of emission bands with pigment-protein complexes at 77 K. Z Pflanzenphysiol 95:149–169

    CAS  Google Scholar 

  • Gilmore AM (2004) Excess light stress: Probing excitation dissipation mechanisms through global analysis of time- and wavelength-resolved chlorophyll a fluorescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht, Springer

    Google Scholar 

  • Gilmore AM, Itoh S, Govindjee (2000) Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Philos Trans R Soc Lond B 355:1371–1384

    Article  CAS  Google Scholar 

  • Gilmore AM, Matsubara S, Ball MC, Barker DH, Itoh S (2003a) Excitation energy flow at 77 K in the photosynthetic apparatus of overwintering evergreens. Plant Cell Environ 26:1021–1034

    Article  Google Scholar 

  • Gilmore AM, Larkum AWD, Salih A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M, van Woesik R (2003b) Simultaneous time resolution of the emission spectra of fluorescent proteins and Zooxanthella Chlorophyll in reef-building corals. Photochem Photobiol 77:515–523

    Article  PubMed  CAS  Google Scholar 

  • Gobets B, Van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507:80–99

    Article  PubMed  CAS  Google Scholar 

  • Gobets B, Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan N, Dekker JP, van Grondelle R (2001) Time-resolved fluorescence emission measurements of photosystem I particles of various cyanobacteria: a unified compartmental model. Biophys J 81:407–424

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Yang L (1966) Structure of the red fluorescence band in chloroplasts. J Gen Physiol 49:763–780

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Orlando

    Google Scholar 

  • Groot ML, Peterman EJG, Van Kan PJM, Van Stokkum IHM, Dekker JP, Van Grondelle R (1994) Temperature-dependent triplet and fluorescence quantum yields of the photosystem II reaction center described in a thermodynamic model. Biophys J 67:318–330

    Article  PubMed  CAS  Google Scholar 

  • Groot ML, Peterman EJG, van Stokkum IHM, Dekker JP, Van Grondelle R (1995) Triplet and fluorescing states of the CP47 antenna complex of photosystem II studied as a function of temperature. Biophys J 68:281–290

    Article  PubMed  CAS  Google Scholar 

  • Groot ML, Frese RN, de Weerd FL, Bromek K, Pettersson Å, Peterman EJG, van Stokkum IHM, van Grondelle R, Dekker JP (1999) Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys J 77:3328–3340

    Article  PubMed  CAS  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nature Struct Mol Biol 16:334–342

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292:1–4

    Article  PubMed  CAS  Google Scholar 

  • Ihalainen JA, Van Stokkum IHM, Gibasiewicz K, Germano M, Van Grondelle R, Dekker JP (2005) Kinetics of excitation trapping in intact photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta 1706:267–275

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Komura M, Watanabe M, Minami C, Koike H, Itoh S, Kashino Y, Satoh K (2008) Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1777:351–361

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Hiramatsu M, Hosoda M, Tsuchiya Y (1991) Picosecond time-resolved absorption spectrometer using a streak camera. Rev Sci Instrum 62:1415–1419

    Article  CAS  Google Scholar 

  • Itoh S, Sugiura K (2004) Photosystem I fluorescence. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Dordrecht, Springer

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauβ N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Ǻ resolution. Nature 411:909–917

    Article  PubMed  CAS  Google Scholar 

  • Komura M, Shibata Y, Itoh S (2006) A new fluorescence band F689 in photosystem II revealed by picosecond analysis at 4–77 K: function of two terminal energy sinks F689 and F695 in PS II. Biochim Biophys Acta 1757:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Krausz E, Hughes JL, Smith PJ, Pace RJ, Årsköld SP (2005) Assignment of the low-temperature fluorescence in oxygen-evolving photosystem II. Photosynth Res 84:193–199

    Article  PubMed  CAS  Google Scholar 

  • Krey A, Govindjee (1964) Fluorescence change in Porphyridium exposed to green light of different intensity: a new emission band at 693 nm and its significance to photosynthesis. Proc Natl Acad Sci USA 52:1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Kwa SLS, Volker S, Tilly NT, van Grondelle R, Dekker JP (1994) Polarized site-selection spectroscopy of chlorophyll a in detergent. Photochem Photobiol 59:219–228

    Article  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Masters V, Smith PJ, Krausz E, Pace R (2001) Stark shifts and exciton coupling in PSII ‘Supercores’. J Lumin 94–95:267–270

    Article  Google Scholar 

  • Melkozernov AN (2001) Excitation energy transfer in photosystem I from oxygenic organisms. Photosyn Res 70:129–153

    Article  PubMed  CAS  Google Scholar 

  • Miloslavina Y, Szczepaniak M, Müller MG, Sander J, Nowaczyk M, Rögner M, Holzwarth AR (2006) Charge separation kinetics in intact photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45:2436–2442

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tamai N, Yamazaki T, Yamazaki I (1987) Excitation energy transfer in spinach chloroplasts. FEBS Lett 213:119–122

    Article  CAS  Google Scholar 

  • Mino H, Itoh S (2005) EPR properties of a g = 2 broad signal trapped in S1 state in the Ca2+-depleted photosystem II. Biochim Biophys Acta 1708:42–49

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Nishimura M, Takamiya A (1966) Fluorescence of chlorophyll in photosynthetic system. III. Emission and action spectra of fluorescence-three emission bands of chlorophyll a and the energy transfer between two pigment systems. Biochim Biophys Acta 126:234–243

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Inoue Y (1986) Effects of removal and reconstitution of the extrinsic 33, 24 and 16 kDa proteins on flash oxygen yield in photosystem II. Biochim Biophys Acta 850:380–389

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (eds) (2004) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht

    Google Scholar 

  • Slavov C, Ballottari M, Morosinotto T, Bassi R, Holzwarth R (2008) Trap-limited charge separation kinetics in higher plant photosystem I complexes. Biophys J 94:3601–3612

    Article  PubMed  CAS  Google Scholar 

  • Tomi T, Shibata Y, Ikeda Y, Taniguchi S, Haik C, Mataga N, Shimada K, Itoh S (2007) Energy and electron transfer in the photosynthetic reaction center complex of Acidiphilium rubrum containing Zn-bacteriochlorophyll a studied by femtosecond up-conversion spectroscopy. Biochim Biophys Acta 1767:22–30

    Article  PubMed  CAS  Google Scholar 

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-Oka H (2004) Function of a PscD subunit in a homodimeric reaction center complex of the photosynthetic green sulfur bacterium Chlorobium tepidum studied by insertional gene inactivation. Regulation of energy transfer and ferredoxin-mediated NADP+ reduction on the cytoplasmic side. J Biol Chem 279:51122–51130

    Article  PubMed  CAS  Google Scholar 

  • Van Dorssen RJ, Plijter JJ, Dekker JP, Den Ouden A, Amesz J, Van Gorkom HJ (1987a) Spectroscopic properties of chloroplast grana membranes and of the core of photosystem II. Biochim Biophys Acta 890:134–143

    Article  Google Scholar 

  • Van Dorssen RJ, Breton J, Plijter JJ, Satoh K, Van Gorkom HJ, Amesz J (1987b) Spectroscopic properties of the reaction center and of the 47-kDa chlorophyll protein of photosystem II. Biochim Biophys Acta 893:267–274

    Article  Google Scholar 

  • Van Stokkum IHM, van Oort B, van Mourik F, Gobets B, van Amerongen H (2008) (Sub)-picosecond spectral evolution of fluorescence studied with a Synchroscan streak-camera system and target analysis. In: Aartsma TJ, Matysik J (eds) Biophysical techniques in photosynthesis (Advances in Photosynthesis and Respiration), vol 26. Springer, Dordrecht, pp 223–240

    Chapter  Google Scholar 

  • Vlakova R (2000) Chlorophyll a self-assembly in polar solvent-water mixtures. Photochem Photobiol 71:71–83

    Article  Google Scholar 

  • Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a COE program for “The origin of the universe and matter” and by a grant-in-aid (No. 17370055) from the Japanese Ministry of Education, Science, Sports, and Culture to S·I. We are grateful to Mrs. Y. Nakamura and Drs. T. Tomi, Y. Shibata, H. Mino, A.M. Gilmore, Govindjee, A.W.D. Larkum, Z. Gombos, and Y. Ikeda who gave us a chance to measure variety of samples. We thank Govindjee for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Itoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komura, M., Itoh, S. Fluorescence measurement by a streak camera in a single-photon-counting mode. Photosynth Res 101, 119–133 (2009). https://doi.org/10.1007/s11120-009-9463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9463-x

Keywords

Navigation