Photosynthesis Research

, Volume 102, Issue 2–3, pp 177–188 | Cite as

Exploring photosynthesis by electron tomography

  • Martin F. Hohmann-Marriott
  • Robert W. Roberson


Electron tomography can resolve biological structures within a few nanometers in three dimensions within the cellular context (McIntosh 2001; McIntosh et al. 2005; Lučić et al. 2005; Baumeister and Steven 2000; Baumeister 2002; Subramaniam and Milne 2004; Subramaniam 2005). Resolving and identifying biological structures with this resolution is an important step toward comprehending the function that a structure accomplishes. Since the cooperation of macromolecular complexes is a crucial aspect of photosynthesis, electron tomography is an excellent technique for exploring structure–function relationships in photosynthetic organisms.

Electron tomography is based on established electron microscopy techniques. Three-dimensional reconstruction of the investigated object can be generated by computationally processing electron microscopy images obtained under different viewing angles. Electron tomography is often the method of choice to fill the resolution gap between light...


Thylakoid Membrane Electron Tomography Scan Transmission Electron Microscopy Bacteriochlorophyll Purple Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Austin JRII, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703PubMedCrossRefGoogle Scholar
  2. Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1061PubMedCrossRefGoogle Scholar
  3. Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684PubMedCrossRefGoogle Scholar
  4. Baumeister W (2005) From proteomic inventory to architecture. FEBS Lett 579:933–937PubMedCrossRefGoogle Scholar
  5. Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25:624–631PubMedCrossRefGoogle Scholar
  6. Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390PubMedCrossRefGoogle Scholar
  7. Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, vol 2. Springer, Dordrecht, The Netherlands, pp 399–435CrossRefGoogle Scholar
  8. Boatman ES, Douglas HC (1961) Fine structure of the photosynthetic bacterium Rhodomicrobium vannielii. J Biophys Biochem Cytol 11:469–483PubMedCrossRefGoogle Scholar
  9. Bouwer JC, Mackey MR, Lawrence A, Deerinck TJ, Jones YZ, Terada M, Martone ME, Peltier S, Ellisman MH (2004) Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J Struct Biol 148:297–306PubMedCrossRefGoogle Scholar
  10. Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets A-M, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127CrossRefGoogle Scholar
  11. Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) “Candidatus Chloracidobacterium thermophilum”: an aerobic phototrophic acidobacterium. Science 317:523–526PubMedCrossRefGoogle Scholar
  12. Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 159:540–554PubMedGoogle Scholar
  13. Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324PubMedCrossRefGoogle Scholar
  14. Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225PubMedCrossRefGoogle Scholar
  15. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunit in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318:618–624CrossRefGoogle Scholar
  16. Drews G (1960) Untersuchungen zur Substruktur der “Chromatophoren” von Rhodospirillum srubrum und Rhodospirillum molischianum. Arch Mikrobiol 36:99–108PubMedCrossRefGoogle Scholar
  17. Drews G (1996) Forty-five years of developmental biology of photosynthetic bacteria. Photosynth Res 48:325–352CrossRefGoogle Scholar
  18. Drews G, Niederman RA (2002) Membrane biogenesis in anoxygenic photosynthetic prokaryotes. Photosynth Res 73:87–94PubMedCrossRefGoogle Scholar
  19. Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114CrossRefGoogle Scholar
  20. Forster F, Pruggnaller S, Seybert A, Frangakis AS (2008) Classification of cryo-electron sub-tomograms using constrained correlation. J Struct Biol 161:276–286PubMedCrossRefGoogle Scholar
  21. Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 16:2063–2068Google Scholar
  22. Frangakis AS, Boöhm J, Foörster F, Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W (2002) Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc Natl Acad Sci USA 99:14153–14158PubMedCrossRefGoogle Scholar
  23. Frank J (2002) Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol Struct 31:303–319PubMedCrossRefGoogle Scholar
  24. Frank J (ed) (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Academic Press, New York, USAGoogle Scholar
  25. Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276PubMedCrossRefGoogle Scholar
  26. Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349CrossRefGoogle Scholar
  27. Galway ME, Heckman JW Jr, Hyde GJ, Fowke LC (1995) Advances in high-pressure and plunge-freeze fixation. Methods Cell Biol 49:3–19PubMedCrossRefGoogle Scholar
  28. Gantt E, Conti SF (1966) Granules associated with the chloroplast lamellae of Prophyridium cruentum. J Cell Biol 29:423–434PubMedCrossRefGoogle Scholar
  29. Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493PubMedGoogle Scholar
  30. Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16CrossRefGoogle Scholar
  31. Gilbert PFC (1972) The reconstitution of three-dimensional structure from projections and its application to electron microscopy. II direct methods. Proc R Soc Lond B 182:89–102PubMedCrossRefGoogle Scholar
  32. Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210CrossRefGoogle Scholar
  33. Golecki JR, Oelze J (1980) Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae. J Bacteriol 144:781–788PubMedGoogle Scholar
  34. Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481PubMedCrossRefGoogle Scholar
  35. Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862PubMedCrossRefGoogle Scholar
  36. Graham LL, Beveridge TJ (1990) Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J Bacteriol 172:2141–2149PubMedGoogle Scholar
  37. Grimm R, Singh H, Rachel R, Typke D, Zillig W, Baumeister W (1998) Electron tomography of ice-embedded prokaryotic cells. Biophys J 74:1031–1042PubMedCrossRefGoogle Scholar
  38. Hall W, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19:551–563PubMedCrossRefGoogle Scholar
  39. Hayat MA (ed) (1981) Fixation for electron microscopy. Academic Press, London, UKGoogle Scholar
  40. Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS ONE 2:e749PubMedCrossRefGoogle Scholar
  41. Hinshaw JE, Miller KR (1993) Mapping the lateral distribution of photosystem II and the cytochrome b6 f complex by direct immune labeling of the thylakoid membrane. J Struct Biol 11:1–8CrossRefGoogle Scholar
  42. Hodge AJ (1959) Fine structure of lamellar systems as illustrated by chloroplasts. Rev Mod Phys 31:331–359CrossRefGoogle Scholar
  43. Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803PubMedCrossRefGoogle Scholar
  44. Hohmann-Marriott MF, Blankenship RE, Roberson RW (2005) The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154PubMedCrossRefGoogle Scholar
  45. Hohmann-Marriott MF, van de Meene AML, Roberson RW (2008) Electron tomographic techniques: a gateway to photosynthetic structure. In: Matysik J, Aartsma TJ (eds) Advances in photosynthesis, biophysical techniques in photosynthesis II, Series editor: GovindjeeGoogle Scholar
  46. Kellenberger E, Johansen R, Maeder M, Bohrmann B, Stauffer E, Villiger W (1992) Artifacts and morphological changes during chemical fixation. J Microsc 168:181–201PubMedGoogle Scholar
  47. Konorty M, Kahana N, Linaroudis A, Minsky A, Medalia O (2008) Structural analysis of photosynthetic membranes by cryo-electron tomography of intact Rhodopseudomonas viridis cells. J Struct Biol 161:393–400PubMedCrossRefGoogle Scholar
  48. Kuhl H, Rögner M, Van Breemen JF, Boekema EJ (1999) Localization of cyanobacterial photosystem II donor-side subunits by electron microscopy and the supramolecular organization of photosystem II in the thylakoid membrane. Eur J Biochem 266:453–459PubMedCrossRefGoogle Scholar
  49. Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99CrossRefGoogle Scholar
  50. Lang NJ (1968) The fine structure of blue-green algae. Annu Rev Microbiol 22:15–46PubMedCrossRefGoogle Scholar
  51. Lepault J, Dubochet J (1986) Electron microscopy of frozen hydrated specimens: preparation and characteristics. Methods Enzymol 127:719–730PubMedCrossRefGoogle Scholar
  52. Liberton M, Pakrasi HB (2008) Membrane systems in cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Horizon Scientific Press, Norwich, UK, pp 271–288Google Scholar
  53. Liberton M, Howard Berg R, Heuser J, Roth R, Pakrasi H (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138PubMedCrossRefGoogle Scholar
  54. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113PubMedCrossRefGoogle Scholar
  55. Lommen MAJ, Takemoto J (1978) Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. J Bacteriol 136:730–741PubMedGoogle Scholar
  56. Lučić V, Förster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865PubMedCrossRefGoogle Scholar
  57. Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT, USAGoogle Scholar
  58. Maurer UE, Sodeik B, Grünewald K (2008) Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci USA 105:10559–10564PubMedCrossRefGoogle Scholar
  59. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521CrossRefGoogle Scholar
  60. McDonald K (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol Biol 117:77–97PubMedCrossRefGoogle Scholar
  61. McDonald KL, Morphew M, Verkade P, Mueller-Reichert T (2007) Recent advances in high-pressure freezing equipment- and specimen-loading method. In: Kuo J (ed) Methods in molecular biology, vol 369, electron microscopy: methods and protocols, 2nd edn. Humana Press Inc., Totowa, NJ, pp 143–173Google Scholar
  62. McDowall AW, Chang JJ, Freeman R, Lepault J, Walter CA, Dubochet J (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131:1–9PubMedGoogle Scholar
  63. McEwen BF, Marko M (2001) The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49:553–564PubMedGoogle Scholar
  64. McIntosh JR (2001) Electron microscopy of cells: a new beginning for a new century. J Cell Biol 153:F25–F32PubMedCrossRefGoogle Scholar
  65. McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51PubMedCrossRefGoogle Scholar
  66. Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213PubMedCrossRefGoogle Scholar
  67. Mercogliano CP, DeRosier DJ (2007) Concatenated metallothionein as a clonable gold label for electron microscopy. Struct Biol 160:70–82CrossRefGoogle Scholar
  68. Miller KR, Jacob JS, Smith U, Kolaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114PubMedCrossRefGoogle Scholar
  69. Mullineaux CW (2008) Factors controlling the mobility of photosynthetic proteins. Photochem Photobiol 84:1310–1316PubMedCrossRefGoogle Scholar
  70. Mustardy L, Cunningham FX, Gantt E (1990) Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol 94:334–340PubMedCrossRefGoogle Scholar
  71. Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedCrossRefGoogle Scholar
  72. Nicastro D, Frangakis AS, Typke D, Baumeister W (2000) Cryo-electron tomography of Neurospora mitochondria. J Struct Biol 129:48–56PubMedCrossRefGoogle Scholar
  73. Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948PubMedCrossRefGoogle Scholar
  74. Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) 3-Dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722PubMedCrossRefGoogle Scholar
  75. Niklowitz W, Drews G (1955) Zur elektronenmikroskopischen Darstellung der Feinstruktur von Rhodospirillum rubrum. Arch Mikrobiol 23:123–129PubMedCrossRefGoogle Scholar
  76. Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, vol 2. Springer, Dordrecht, The Netherlands, pp 259–278CrossRefGoogle Scholar
  77. Oostergetel GT, Reus M, Gomez Maqueo Chewc A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439PubMedGoogle Scholar
  78. Ortiz JO, Förster F, Kürner J, Linaroudis AA, Baumeister W (2006) Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J Struct Biol 156:334–341PubMedCrossRefGoogle Scholar
  79. Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95:285–298PubMedCrossRefGoogle Scholar
  80. Pšenčík J, Ikonen TP, Laurinmaki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting system of green bacteria. Biophys J 87:1165–1172PubMedCrossRefGoogle Scholar
  81. Rademacher M (1992) Weighted back-projection methods. In: Frank J (ed) Electron tomography. Three-dimensional imaging with the transmission electron microscope. Plenum, New York, USA, pp 115–191Google Scholar
  82. Rath BK, Hegerl R, Leith A, Shaikh TR, Wagenknecht T, Frank J (2003) Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J Struct Biol 144:95–103PubMedCrossRefGoogle Scholar
  83. Rémigy H-W, Stahlberg H, Fotiadis D, Wolpensinger B, Engel A, Hauska G, Tsiotis G (1999) The reaction center complex from the green sulfur bacterium C. tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 290:851–858PubMedCrossRefGoogle Scholar
  84. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  85. Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80PubMedCrossRefGoogle Scholar
  86. Sabatini DD, Bensch K, Barnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58PubMedCrossRefGoogle Scholar
  87. Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145PubMedCrossRefGoogle Scholar
  88. Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535PubMedCrossRefGoogle Scholar
  89. Schwartz CL, Sarbash VI, Ataullakhanov FI, McIntosh JR, Nicastro D (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227:98–109PubMedCrossRefGoogle Scholar
  90. Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104:15723–15728PubMedCrossRefGoogle Scholar
  91. Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576PubMedCrossRefGoogle Scholar
  92. Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586PubMedCrossRefGoogle Scholar
  93. Skepper JN (2000) Immunocytochemical strategies for electron microscopy: choice or compromise. J Microsc 199:1–36PubMedCrossRefGoogle Scholar
  94. Sousa AA, Hohmann-Marriott MF, Zhang G, Leapman RD (2009) Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy 109:213–221PubMedCrossRefGoogle Scholar
  95. Sprague SG, Fuller RC (1990) Green phototrophic bacteria and heliobacteria. In: Stolz JF (ed) Structure of phototrophic prokaryotes. CRC Press, Boca Raton, USA, pp 79–104Google Scholar
  96. Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031PubMedGoogle Scholar
  97. Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71:136–158PubMedCrossRefGoogle Scholar
  98. Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196PubMedCrossRefGoogle Scholar
  99. Staehelin LA, DeWit M (1984) Correlation of structure and function of chloroplast membranes at the supramolecular level. J Cell Biochem 24:261–269PubMedCrossRefGoogle Scholar
  100. Staehelin LA, Newcomb EH (2002) Membrane structure and membranous organelles. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology Press, Rockville, USA, pp 2–50Google Scholar
  101. Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45PubMedCrossRefGoogle Scholar
  102. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274PubMedCrossRefGoogle Scholar
  103. Steven AC, Baumeister W (2008) The future is hybrid. J Struct Biol 163:186–195PubMedCrossRefGoogle Scholar
  104. Stolz JF (ed) (1990) Structure of phototrophic prokaryotes. CRC Press, Boca Raton, USAGoogle Scholar
  105. Sturgis JN, Niederman RA (2006) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95:269–278CrossRefGoogle Scholar
  106. Subramaniam S (2005) Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr Opin Microbiol 8:316–322PubMedCrossRefGoogle Scholar
  107. Subramaniam S, Milne JL (2004) Three-dimensional electron microscopy at molecular resolution. Annu Rev Biophys Biomol Struct 33:141–155PubMedCrossRefGoogle Scholar
  108. Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493PubMedCrossRefGoogle Scholar
  109. Trentini WC, Starr MP (1967) Growth and ultrastructure of Rhodomicrobium vannielii as a function of light intensity. J Bacteriol 93:1699–1704PubMedGoogle Scholar
  110. Vallon O, Wollman F-A, Olive J (1985) Distribution of intrinsic and extrinsic subunits of the PS II protein complex between appressed and non-appressed regions of the thylakoid membrane: an immunocytochemical study. FEBS Lett 183:245–250CrossRefGoogle Scholar
  111. van de Meene AM, Hohmann-Marriott MF, Vermaas WF, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270PubMedCrossRefGoogle Scholar
  112. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369PubMedCrossRefGoogle Scholar
  113. Wollman FA, Olive J, Bennoun P, Recouvreur M (1980) Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers. Cell Biol 87:728–735CrossRefGoogle Scholar
  114. Yakushevska AE, Lebbink MN, Geerts WJC, Spek L, van Donselaar EG, Jansen KA, Humbel BM, Post JA, Verkleij AJ, Koster AJ (2007) STEM tomography in cell biology. J Struct Biol 159:381–391PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Martin F. Hohmann-Marriott
    • 1
  • Robert W. Roberson
    • 2
  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  2. 2.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations