Skip to main content
Log in

Exploring photosynthesis by electron tomography

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Austin JRII, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1061

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W (2005) From proteomic inventory to architecture. FEBS Lett 579:933–937

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25:624–631

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, vol 2. Springer, Dordrecht, The Netherlands, pp 399–435

    Chapter  Google Scholar 

  • Boatman ES, Douglas HC (1961) Fine structure of the photosynthetic bacterium Rhodomicrobium vannielii. J Biophys Biochem Cytol 11:469–483

    Article  PubMed  CAS  Google Scholar 

  • Bouwer JC, Mackey MR, Lawrence A, Deerinck TJ, Jones YZ, Terada M, Martone ME, Peltier S, Ellisman MH (2004) Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J Struct Biol 148:297–306

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets A-M, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127

    Article  CAS  Google Scholar 

  • Bryant DA, Garcia Costas AM, Maresca JA, Gomez Maqueo Chew A, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) “Candidatus Chloracidobacterium thermophilum”: an aerobic phototrophic acidobacterium. Science 317:523–526

    Article  PubMed  CAS  Google Scholar 

  • Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S (1984) Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 159:540–554

    PubMed  CAS  Google Scholar 

  • Cogdell RJ, Gall A, Kohler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39:227–324

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunit in the photosynthetic reaction center of Rhodopseudomonas viridis at 3 A resolution. Nature 318:618–624

    Article  Google Scholar 

  • Drews G (1960) Untersuchungen zur Substruktur der “Chromatophoren” von Rhodospirillum srubrum und Rhodospirillum molischianum. Arch Mikrobiol 36:99–108

    Article  PubMed  CAS  Google Scholar 

  • Drews G (1996) Forty-five years of developmental biology of photosynthetic bacteria. Photosynth Res 48:325–352

    Article  CAS  Google Scholar 

  • Drews G, Niederman RA (2002) Membrane biogenesis in anoxygenic photosynthetic prokaryotes. Photosynth Res 73:87–94

    Article  PubMed  CAS  Google Scholar 

  • Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114

    Article  CAS  Google Scholar 

  • Forster F, Pruggnaller S, Seybert A, Frangakis AS (2008) Classification of cryo-electron sub-tomograms using constrained correlation. J Struct Biol 161:276–286

    Article  PubMed  Google Scholar 

  • Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A, Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 16:2063–2068

    Google Scholar 

  • Frangakis AS, Boöhm J, Foörster F, Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W (2002) Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc Natl Acad Sci USA 99:14153–14158

    Article  PubMed  CAS  Google Scholar 

  • Frank J (2002) Single-particle imaging of macromolecules by cryo-electron microscopy. Annu Rev Biophys Biomol Struct 31:303–319

    Article  PubMed  CAS  Google Scholar 

  • Frank J (ed) (2006) Three-dimensional electron microscopy of macromolecular assemblies: visualization of biological molecules in their native state. Academic Press, New York, USA

    Google Scholar 

  • Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276

    Article  PubMed  CAS  Google Scholar 

  • Fuller RC, Sprague SG, Gest H, Blankenship RE (1985) A unique photosynthetic reaction center from Heliobacterium chlorum. FEBS Lett 182:345–349

    Article  CAS  Google Scholar 

  • Galway ME, Heckman JW Jr, Hyde GJ, Fowke LC (1995) Advances in high-pressure and plunge-freeze fixation. Methods Cell Biol 49:3–19

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Conti SF (1966) Granules associated with the chloroplast lamellae of Prophyridium cruentum. J Cell Biol 29:423–434

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493

    PubMed  CAS  Google Scholar 

  • Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16

    Article  CAS  Google Scholar 

  • Gilbert PFC (1972) The reconstitution of three-dimensional structure from projections and its application to electron microscopy. II direct methods. Proc R Soc Lond B 182:89–102

    Article  PubMed  CAS  Google Scholar 

  • Gilkey JC, Staehelin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Electron Microsc Tech 3:177–210

    Article  Google Scholar 

  • Golecki JR, Oelze J (1980) Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae. J Bacteriol 144:781–788

    PubMed  CAS  Google Scholar 

  • Gordon R, Bender R, Herman GT (1970) Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and X-ray photography. J Theor Biol 29:471–481

    Article  PubMed  CAS  Google Scholar 

  • Grabenbauer M, Geerts WJC, Fernadez-Rodriguez J, Hoenger A, Koster AJ, Nilsson T (2005) Correlative microscopy and electron tomography of GFP through photooxidation. Nat Methods 2:857–862

    Article  PubMed  CAS  Google Scholar 

  • Graham LL, Beveridge TJ (1990) Evaluation of freeze-substitution and conventional embedding protocols for routine electron microscopic processing of eubacteria. J Bacteriol 172:2141–2149

    PubMed  CAS  Google Scholar 

  • Grimm R, Singh H, Rachel R, Typke D, Zillig W, Baumeister W (1998) Electron tomography of ice-embedded prokaryotic cells. Biophys J 74:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Hall W, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19:551–563

    Article  PubMed  CAS  Google Scholar 

  • Hayat MA (ed) (1981) Fixation for electron microscopy. Academic Press, London, UK

    Google Scholar 

  • Henderson GP, Gan L, Jensen GJ (2007) 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS ONE 2:e749

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw JE, Miller KR (1993) Mapping the lateral distribution of photosystem II and the cytochrome b6 f complex by direct immune labeling of the thylakoid membrane. J Struct Biol 11:1–8

    Article  Google Scholar 

  • Hodge AJ (1959) Fine structure of lamellar systems as illustrated by chloroplasts. Rev Mod Phys 31:331–359

    Article  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE, Roberson RW (2005) The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154

    Article  PubMed  CAS  Google Scholar 

  • Hohmann-Marriott MF, van de Meene AML, Roberson RW (2008) Electron tomographic techniques: a gateway to photosynthetic structure. In: Matysik J, Aartsma TJ (eds) Advances in photosynthesis, biophysical techniques in photosynthesis II, Series editor: Govindjee

  • Kellenberger E, Johansen R, Maeder M, Bohrmann B, Stauffer E, Villiger W (1992) Artifacts and morphological changes during chemical fixation. J Microsc 168:181–201

    PubMed  CAS  Google Scholar 

  • Konorty M, Kahana N, Linaroudis A, Minsky A, Medalia O (2008) Structural analysis of photosynthetic membranes by cryo-electron tomography of intact Rhodopseudomonas viridis cells. J Struct Biol 161:393–400

    Article  PubMed  CAS  Google Scholar 

  • Kuhl H, Rögner M, Van Breemen JF, Boekema EJ (1999) Localization of cyanobacterial photosystem II donor-side subunits by electron microscopy and the supramolecular organization of photosystem II in the thylakoid membrane. Eur J Biochem 266:453–459

    Article  PubMed  CAS  Google Scholar 

  • Kunkel DD (1982) Thylakoid centers: structures associated with the cyanobacterial photosynthetic membrane system. Arch Microbiol 133:97–99

    Article  Google Scholar 

  • Lang NJ (1968) The fine structure of blue-green algae. Annu Rev Microbiol 22:15–46

    Article  PubMed  CAS  Google Scholar 

  • Lepault J, Dubochet J (1986) Electron microscopy of frozen hydrated specimens: preparation and characteristics. Methods Enzymol 127:719–730

    Article  PubMed  CAS  Google Scholar 

  • Liberton M, Pakrasi HB (2008) Membrane systems in cyanobacteria. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genomics and evolution. Horizon Scientific Press, Norwich, UK, pp 271–288

    Google Scholar 

  • Liberton M, Howard Berg R, Heuser J, Roth R, Pakrasi H (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138

    Article  PubMed  Google Scholar 

  • Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113

    Article  PubMed  CAS  Google Scholar 

  • Lommen MAJ, Takemoto J (1978) Comparison, by freeze-fracture electron microscopy, of chromatophores, spheroplast-derived membrane vesicles, and whole cells of Rhodopseudomonas sphaeroides. J Bacteriol 136:730–741

    PubMed  CAS  Google Scholar 

  • Lučić V, Förster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865

    Article  PubMed  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven, CT, USA

    Google Scholar 

  • Maurer UE, Sodeik B, Grünewald K (2008) Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry. Proc Natl Acad Sci USA 105:10559–10564

    Article  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  CAS  Google Scholar 

  • McDonald K (1999) High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods Mol Biol 117:77–97

    Article  PubMed  CAS  Google Scholar 

  • McDonald KL, Morphew M, Verkade P, Mueller-Reichert T (2007) Recent advances in high-pressure freezing equipment- and specimen-loading method. In: Kuo J (ed) Methods in molecular biology, vol 369, electron microscopy: methods and protocols, 2nd edn. Humana Press Inc., Totowa, NJ, pp 143–173

    Google Scholar 

  • McDowall AW, Chang JJ, Freeman R, Lepault J, Walter CA, Dubochet J (1983) Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131:1–9

    PubMed  CAS  Google Scholar 

  • McEwen BF, Marko M (2001) The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J Histochem Cytochem 49:553–564

    PubMed  CAS  Google Scholar 

  • McIntosh JR (2001) Electron microscopy of cells: a new beginning for a new century. J Cell Biol 153:F25–F32

    Article  PubMed  CAS  Google Scholar 

  • McIntosh R, Nicastro D, Mastronarde D (2005) New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:43–51

    Article  PubMed  CAS  Google Scholar 

  • Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Mercogliano CP, DeRosier DJ (2007) Concatenated metallothionein as a clonable gold label for electron microscopy. Struct Biol 160:70–82

    Article  CAS  Google Scholar 

  • Miller KR, Jacob JS, Smith U, Kolaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW (2008) Factors controlling the mobility of photosynthetic proteins. Photochem Photobiol 84:1310–1316

    Article  PubMed  CAS  Google Scholar 

  • Mustardy L, Cunningham FX, Gantt E (1990) Localization and quantitation of chloroplast enzymes and light-harvesting components using immunocytochemical methods. Plant Physiol 94:334–340

    Article  PubMed  CAS  Google Scholar 

  • Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Reich Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473

    Article  PubMed  CAS  Google Scholar 

  • Nicastro D, Frangakis AS, Typke D, Baumeister W (2000) Cryo-electron tomography of Neurospora mitochondria. J Struct Biol 129:48–56

    Article  PubMed  CAS  Google Scholar 

  • Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR (2006) The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–948

    Article  PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Balkwill DL, Stevens SE (1983) 3-Dimensional ultrastructure of a unicellular cyanobacterium. J Cell Biol 97:713–722

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz W, Drews G (1955) Zur elektronenmikroskopischen Darstellung der Feinstruktur von Rhodospirillum rubrum. Arch Mikrobiol 23:123–129

    Article  PubMed  CAS  Google Scholar 

  • Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Advances in photosynthesis and respiration, vol 2. Springer, Dordrecht, The Netherlands, pp 259–278

    Chapter  Google Scholar 

  • Oostergetel GT, Reus M, Gomez Maqueo Chewc A, Bryant DA, Boekema EJ, Holzwarth AR (2007) Long-range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo-electron microscopy. FEBS Lett 581:5435–5439

    PubMed  CAS  Google Scholar 

  • Ortiz JO, Förster F, Kürner J, Linaroudis AA, Baumeister W (2006) Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. J Struct Biol 156:334–341

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95:285–298

    Article  PubMed  CAS  Google Scholar 

  • Pšenčík J, Ikonen TP, Laurinmaki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting system of green bacteria. Biophys J 87:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Rademacher M (1992) Weighted back-projection methods. In: Frank J (ed) Electron tomography. Three-dimensional imaging with the transmission electron microscope. Plenum, New York, USA, pp 115–191

    Google Scholar 

  • Rath BK, Hegerl R, Leith A, Shaikh TR, Wagenknecht T, Frank J (2003) Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J Struct Biol 144:95–103

    Article  PubMed  CAS  Google Scholar 

  • Rémigy H-W, Stahlberg H, Fotiadis D, Wolpensinger B, Engel A, Hauska G, Tsiotis G (1999) The reaction center complex from the green sulfur bacterium C. tepidum: a structural analysis by scanning transmission electron microscopy. J Mol Biol 290:851–858

    Article  PubMed  Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Article  CAS  Google Scholar 

  • Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80

    Article  PubMed  CAS  Google Scholar 

  • Sabatini DD, Bensch K, Barnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  PubMed  CAS  Google Scholar 

  • Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145

    Article  PubMed  Google Scholar 

  • Schmid MF, Paredes AM, Khant HA, Soyer F, Aldrich HC, Chiu W, Shively JM (2006) Structure of Halothiobacillus neapolitanus carboxysomes by cryo-electron tomography. J Mol Biol 364:526–535

    Article  PubMed  CAS  Google Scholar 

  • Schwartz CL, Sarbash VI, Ataullakhanov FI, McIntosh JR, Nicastro D (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227:98–109

    Article  PubMed  Google Scholar 

  • Sener MK, Olsen JD, Hunter CN, Schulten K (2007) Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA 104:15723–15728

    Article  PubMed  Google Scholar 

  • Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576

    Article  PubMed  CAS  Google Scholar 

  • Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant Cell 17:2580–2586

    Article  PubMed  CAS  Google Scholar 

  • Skepper JN (2000) Immunocytochemical strategies for electron microscopy: choice or compromise. J Microsc 199:1–36

    Article  PubMed  CAS  Google Scholar 

  • Sousa AA, Hohmann-Marriott MF, Zhang G, Leapman RD (2009) Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections. Ultramicroscopy 109:213–221

    Article  PubMed  CAS  Google Scholar 

  • Sprague SG, Fuller RC (1990) Green phototrophic bacteria and heliobacteria. In: Stolz JF (ed) Structure of phototrophic prokaryotes. CRC Press, Boca Raton, USA, pp 79–104

    Google Scholar 

  • Sprague SG, Staehelin LA, DiBartolomeis MJ, Fuller RC (1981) Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147:1021–1031

    PubMed  CAS  Google Scholar 

  • Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro. J Cell Biol 71:136–158

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76:185–196

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, DeWit M (1984) Correlation of structure and function of chloroplast membranes at the supramolecular level. J Cell Biochem 24:261–269

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Newcomb EH (2002) Membrane structure and membranous organelles. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology Press, Rockville, USA, pp 2–50

  • Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45

    Article  PubMed  CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    Article  PubMed  CAS  Google Scholar 

  • Steven AC, Baumeister W (2008) The future is hybrid. J Struct Biol 163:186–195

    Article  PubMed  CAS  Google Scholar 

  • Stolz JF (ed) (1990) Structure of phototrophic prokaryotes. CRC Press, Boca Raton, USA

    Google Scholar 

  • Sturgis JN, Niederman RA (2006) Atomic force microscopy reveals multiple patterns of antenna organization in purple bacteria: implications for energy transduction mechanisms and membrane modeling. Photosynth Res 95:269–278

    Article  CAS  Google Scholar 

  • Subramaniam S (2005) Bridging the imaging gap: visualizing subcellular architecture with electron tomography. Curr Opin Microbiol 8:316–322

    Article  PubMed  Google Scholar 

  • Subramaniam S, Milne JL (2004) Three-dimensional electron microscopy at molecular resolution. Annu Rev Biophys Biomol Struct 33:141–155

    Article  PubMed  CAS  Google Scholar 

  • Ting CS, Hsieh C, Sundararaman S, Mannella C, Marko M (2007) Cryo-electron tomography reveals the comparative three-dimensional architecture of Prochlorococcus, a globally important marine cyanobacterium. J Bacteriol 189:4485–4493

    Article  PubMed  CAS  Google Scholar 

  • Trentini WC, Starr MP (1967) Growth and ultrastructure of Rhodomicrobium vannielii as a function of light intensity. J Bacteriol 93:1699–1704

    PubMed  CAS  Google Scholar 

  • Vallon O, Wollman F-A, Olive J (1985) Distribution of intrinsic and extrinsic subunits of the PS II protein complex between appressed and non-appressed regions of the thylakoid membrane: an immunocytochemical study. FEBS Lett 183:245–250

    Article  CAS  Google Scholar 

  • van de Meene AM, Hohmann-Marriott MF, Vermaas WF, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270

    Article  PubMed  CAS  Google Scholar 

  • van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M, Patwardhan A (2000) Single-particle electron cryo-microscopy: towards atomic resolution. Q Rev Biophys 33:307–369

    Article  PubMed  Google Scholar 

  • Wollman FA, Olive J, Bennoun P, Recouvreur M (1980) Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers. Cell Biol 87:728–735

    Article  CAS  Google Scholar 

  • Yakushevska AE, Lebbink MN, Geerts WJC, Spek L, van Donselaar EG, Jansen KA, Humbel BM, Post JA, Verkleij AJ, Koster AJ (2007) STEM tomography in cell biology. J Struct Biol 159:381–391

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Hohmann-Marriott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohmann-Marriott, M.F., Roberson, R.W. Exploring photosynthesis by electron tomography. Photosynth Res 102, 177–188 (2009). https://doi.org/10.1007/s11120-009-9452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9452-0

Keywords

Navigation