Photosynthesis Research

, Volume 100, Issue 1, pp 19–28 | Cite as

Singlet oxygen formation and chlorophyll a triplet excited state deactivation in the cytochrome b 6 f complex from Bryopsis corticulans

  • Fei Ma
  • Xiao-Bo Chen
  • Min Sang
  • Peng Wang
  • Jian-Ping Zhang
  • Liang-Bi Li
  • Ting-Yun Kuang
Regular Paper


We have attempted to investigate the correlation between the detergent-perturbed structural integrity of the Cyt b 6 f complex from the marine green alga Bryopsis corticulans and its photo-protective properties, for which the nonionic detergents n-octyl-β-d-glucopyranoside (β-OG) and n-dodecyl-β-d-maltoside (β-DM), respectively, were used for the preparation of Cyt b 6 f, and the singlet oxygen (1O2*) production as well as the triplet excited-state chlorophyll a (3Chl a*) formation and deactivation were examined by spectroscopic means. Near-infrared luminescence of 1O2 * (~1,270 nm) on photo-irradiation was detected for the β-OG preparation where the complex is mainly in oligomeric state, but not for the β-DM one in which the complex exists in dimeric form. Under anaerobic condition, photo-excitation of Chl a in the β-DM preparation generated 3Chl a* with a lower quantum yield of ΦT ~ 0.02 and a longer lifetime of ~600 μs with respect to those as in the case of β-OG preparation, ΦT ~ 0.12 and 200–300 μs. These results prove that the enzymatically active and intact Cyt b 6 f complex on photo-excitation tends to produce little 3Chl a* or 1O2 *, which implies that the pigment–protein assembly of Cyt b 6 f complex per se is crucial for photo-protection.


Cytochrome b6f Photo protection Singlet oxygen Triplet excited state Excitation energy transfer 




3Chl a*

Triplet excited state chlorophyll a

Cyt b6f

Cytochrome b 6 f complex




Excitation energy transfer


Singlet oxygen




Sodium dodecyl sulfate


Quantum yield of triplet excited state chlorophyll a



We are grateful for the assistance in DLS experiments by Dr. Yi-Wei Liu at the Department of Biological Science and Biotechnology, Tsinghua University. This work has been jointly supported by the National Basic Research Program of China (2009CB220008), the Natural Science Foundation of China (20673144 and 20703067) and the Natural Science Foundation of Hebei Province (C2008000684).


  1. Anderson JM (1992) Cytochrome b 6 f complex: dynamic molecular organization, function and acclimation. Photosynth Res 34:341–357. doi: 10.1007/BF00029810 CrossRefGoogle Scholar
  2. Boronowsky U, Wenk SO, Schneider D, Jäger C, Rögner M (2001) Isolation of membrane protein subunits in their native states: evidence for selective binding of chlorophyll and carotenoid to the b 6 subunit of the cytochrome b 6 f complex. Biochim Biophys Acta 1506:55–66. doi: 10.1016/S0005-2728(01)00184-0 PubMedCrossRefGoogle Scholar
  3. Bowers PG, Porter G (1967) Quantum yields of triplet formation in solutions of chlorophyll. Proc R Soc A 296:435–441. doi: 10.1098/rspa.1967.0036 CrossRefGoogle Scholar
  4. Breyton C, Tribet C, Olive J, Dubacq JP, Popot JL (1997) Dimer to monomer conversion of the cytochrome b 6 f complex. J Biol Chem 272:21892–21900. doi: 10.1074/jbc.272.35.21892 PubMedCrossRefGoogle Scholar
  5. Chen XB, Zhao XH, Zhu Y, Gong YD, Li LB, Zhang JP, Kuang TY (2006) Hydrogen peroxide-induced chlorophyll a bleaching in the cytochrome b 6 f complex: a simple and effective assay for stability of the complex in detergent solutions. Photosynth Res 90:205–214. doi: 10.1007/s11120-006-9118-0 PubMedCrossRefGoogle Scholar
  6. Cogdell RJ, Hipkins MF, MacDonald W, Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B800–850 light-harvesting pigment–protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634:191–202. doi: 10.1016/0005-2728(81)90138-9 PubMedCrossRefGoogle Scholar
  7. Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL (1996) Some new structural aspects and old controversies concerning the cytochrome b 6 f complex of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:477–508. doi: 10.1146/annurev.arplant.47.1.477 PubMedCrossRefGoogle Scholar
  8. Cramer WA, Zhang HM, Yan JS, Kurisu G, Smith JL (2004) Evolution of photosynthesis: time-independent structure of the cytochrome b 6 f complex. Biochemistry 43:5921–5929. doi: 10.1021/bi049444o PubMedCrossRefGoogle Scholar
  9. Cramer WA, Yan JS, Zhang HM, Kurisu G, Smith JL (2005) Structure of the cytochrome b 6 f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’ for assembly of the complex. Photosynth Res 85:133–144. doi: 10.1007/s11120-004-2149-5 PubMedCrossRefGoogle Scholar
  10. Crystall B, Booth PJ, Klug DR, Barber J, Porter G (1989) Resolution of a long lived fluorescence component from D1/D2/cytochrome b-559 reaction centers. FEBS Lett 249:75–78. doi: 10.1016/0014-5793(89)80019-5 CrossRefGoogle Scholar
  11. Dashdorj N, Zhang HM, Kim H, Yan JS, Cramer WA, Savikhin (2005) The single chlorophyll a molecule in the cytochrome b 6 f complex: unusual optical properties protect the complex against singlet oxygen. Biophys J 88:4178–4187. doi: 10.1529/biophysj.104.058693 PubMedCrossRefGoogle Scholar
  12. Dědic R, Svoboda A, Pšeněík J, Lupínková L, Komenda J, Hála J (2003) Time and spectral resolved phosphorescence of singlet oxygen and pigments in photosystem II particles. J Lumin 102:313–317. doi: 10.1016/S0022-2313(02)00524-0 CrossRefGoogle Scholar
  13. Frank HA, Cogdell RJ (1993) Photochemistry and functions of carotenoids in photosynthesis. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapman and Hall, London, pp 252–326Google Scholar
  14. Hope AB (1993) The chloroplast cytochrome bf complex: a critical focus on function. Biochim Biophys Acta 1143:1–22. doi: 10.1016/0005-2728(93)90210-7 PubMedCrossRefGoogle Scholar
  15. Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A, Uchida A (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 282:6525–6531. doi: 10.1074/jbc.M609458200 PubMedCrossRefGoogle Scholar
  16. Kim H, Dashdorj N, Zhang HM, Yan JS, Cramer WA, Savikhin S (2005) An anomalous distance dependence of intra-protein chlorophyll-carotenoid triplet energy transfer. Biophys J 89:L28–L30. doi: 10.1529/biophysj.105.069609 PubMedCrossRefGoogle Scholar
  17. Kingma H, van Grondelle R, Duysens LNM (1985) Magnetic-field effects in photosynthetic bacteria. II. Formation of triplet states in the reaction center and the antenna of Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Biochim Biophys Acta 808:383–399. doi: 10.1016/0005-2728(85)90147-1 CrossRefGoogle Scholar
  18. Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51:649–660. doi: 10.1351/pac197951030649 CrossRefGoogle Scholar
  19. Kurisu G, Zhang HM, Smith JL, Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014. doi: 10.1126/science.1090165 PubMedCrossRefGoogle Scholar
  20. Lavalette AL, Finazzi G, Zito F (2008) b 6 f-Associated chlorophyll: structural and dynamic contribution to the different cytochrome functions. Biochemistry 47:5259–5265. doi: 10.1021/bi800179b CrossRefGoogle Scholar
  21. Li YF, Zhou W, Blankenship RE, Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271:456–471. doi: 10.1006/jmbi.1997.1189 PubMedCrossRefGoogle Scholar
  22. Li BX, Zuo P, Chen XB, Li LB, Zhang JP, Kuang TY (2006) Study on energy transfer between carotenoid and chlorophyll a in cytochrome b 6 f complex from Bryopsis corticulans. Photosynth Res 88:43–50. doi: 10.1007/s11120-005-9020-1 PubMedCrossRefGoogle Scholar
  23. Peterman EJG, Wenk SO, Pullerits T, Pålsson LO, van Grondelle R, Dekker JP, Rögner M, van Amerongen H (1998) Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b 6 f of Synechocystis PCC6803. Biophys J 75:389–398. doi: 10.1016/S0006-3495(98)77523-X PubMedCrossRefGoogle Scholar
  24. Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL (1997) On the presence and role of a molecule of chlorophyll a in the cytochrome b 6 f complex. J Biol Chem 272:21901–21908. doi: 10.1074/jbc.272.35.21901 PubMedCrossRefGoogle Scholar
  25. Schödel R, Irrgang KD, Voigt J, Renger G (1998) Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J 75:3143–3153. doi: 10.1016/S0006-3495(98)77756-2 PubMedCrossRefGoogle Scholar
  26. Seely GR, Connolly JS (1986) Fluorescence of photosynthetic pigments in vitro. In: Govindjee JA, Fork DC (eds) Light emission by plants and bacteria. Academic Press, New York, pp 99–133Google Scholar
  27. Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69:561–568. doi: 10.1111/j.1399-3054.1987.tb09240.x CrossRefGoogle Scholar
  28. Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426:413–418. doi: 10.1038/nature02155 PubMedCrossRefGoogle Scholar
  29. Truong T, Bersohn R, Brumer P, Luk CK, Tao T (1967) Effect of pH on the phosphorescence of tryptophan, tyrosine and proteins. J Biol Chem 242:2979–2985PubMedGoogle Scholar
  30. van Stokkum IM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657:82–104. doi: 10.1016/j.bbabio.2004.04.011 PubMedCrossRefGoogle Scholar
  31. Yan JS, Liu YL, Mao DZ, Li LB, Kuang TY (2001) The presence of 9-cis-β-carotene in cytochrome b 6 f complex from spinach. Biochim Biophys Acta 1506:182–188. doi: 10.1016/S0005-2728(01)00212-2 PubMedCrossRefGoogle Scholar
  32. Yan JS, Dashdorj N, Baniulis D, Yamashita E, Savikhin S, Cramer WA (2008) On the structural role of the aromatic residue environment of the chlorophyll a in the cytochrome b 6 f complex. Biochemistry 47:3654–3661. doi: 10.1021/bi702299b PubMedCrossRefGoogle Scholar
  33. Zhang HM, Huang DR, Cramer WA (1999) Stoichiometrically bound β-carotene in the cytochrome b 6 f complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem 274:1581–1587. doi: 10.1074/jbc.274.3.1581 PubMedCrossRefGoogle Scholar
  34. Zuo P, Li BX, Zhao XH, Wu YS, Ai XC, Zhang JP, Li LB, Kuang TY (2006) Ultrafast carotenoid-to-chlorophyll singlet energy transfer in the cytochrome b 6 f complex from Bryopsis corticulans. Biophys J 90:4145–4154. doi: 10.1529/biophysj.105.076612 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Science (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of ChemistryRenmin University of ChinaBeijingChina
  3. 3.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations