Skip to main content
Log in

Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO2 concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F V/F M or F V/F P) of the different cell layers. Evidence is presented for a step gradient of F V/F P ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F V/F P ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Net CO2 uptake

BSE:

Bundle sheath extensions

Chl:

Chlorophyll

ETR :

Electron transport rate

ΦPSII and Φexc. :

Actual and intrinsic photosystem II efficiencies, respectively

FO and \(F^{\prime}_{O}\):

Minimal Chl fluorescence yield in the dark or during light adaptation, respectively

FM and \(F^{\prime}_{M}\):

Maximal Chl fluorescence yield in the dark or during light adaptation, respectively

F S :

Chl fluorescence at steady-state photosynthesis

F P :

Chl fluorescence at the peak of the continuous fluorescence induction curve

FV and \(F^{\prime}_{V}\):

FM − FO or FP − FO, and \(F^{\prime}_{M}\) − \(F^{\prime}_{O}\), respectively

g S :

Stomatal conductance

NPQ :

Non-photochemical quenching

PPFD:

Photosynthetic photon flux density

PSI and PSII:

Photosystems I and II, respectively

qP :

Photochemical quenching

References

  • Abadía A, Gil E, Morales F, Montañés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant Cell Environ 19:685–694. doi:10.1111/j.1365-3040.1996.tb00403.x

    Article  Google Scholar 

  • Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192. doi:10.1023/A:1004451728237

    Article  Google Scholar 

  • Agati G, Cerovic ZG, Moya I (2000) The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: the role of photosystem I contribution to the 735 nm fluorescence band. Photochem Photobiol 72(1):75–84. doi:10.1562/0031-8655(2000)072<0075:TEODTU>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • Balaguer L, Martínez-Ferri E, Valladares F, Pérez-Corona ME, Baquedano FJ, Castillo FJ, Manrique E (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Funct Ecol 15:124–135. doi:10.1046/j.1365-2435.2001.00505.x

    Article  Google Scholar 

  • Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to reduction in the dark of the photosystem II acceptor side. Photosynth Res 56:265–276. doi:10.1023/A:1006039917599

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi:10.1007/BF00033159

    Article  CAS  Google Scholar 

  • Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763. doi:10.1111/j.1399-3054.1997.tb01060.x

    Article  CAS  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504. doi:10.1007/BF00402983

    Article  Google Scholar 

  • Bolhar-Nordenkampf HR, Long PS, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi:10.2307/2389624

    Article  Google Scholar 

  • Bornman JF, Vogelmann TC, Martin G (1991) Measurement of chlorophyll fluorescence within leaves using a fiber optic microprobe. Plant Cell Environ 14:719–725. doi:10.1111/j.1365-3040.1991.tb01546.x

    Article  CAS  Google Scholar 

  • Briantais JM, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 539–583

    Google Scholar 

  • Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271. doi:10.1007/s11120-007-9187-8

    Article  PubMed  CAS  Google Scholar 

  • Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I (1999) Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie 19:543–578. doi:10.1051/agro:19990701

    Article  Google Scholar 

  • Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676. doi:10.1046/j.1365-3040.2002.00942.x

    Article  CAS  Google Scholar 

  • Cui M, Vogelmann TC, Smith WK (1991) Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. Plant Cell Environ 14:493–500. doi:10.1111/j.1365-3040.1991.tb01519.x

    Article  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104. doi:10.1046/j.1469-8137.1999.00440.x

    Article  Google Scholar 

  • Evans JR, Vogelmann TC (2006) Photosynthesis within isobilateral Eucalyptus pauciflora leaves. New Phytol 171:771–782. doi:10.1111/j.1469-8137.2006.01789.x

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346

    PubMed  CAS  Google Scholar 

  • Evans JR, Jakobsen I, Ögren E (1993) Photosynthetic light response curves. 2. Gradients of light absorption and photosynthetic capacity. Planta 189:191–200. doi:10.1007/BF00195076

    Article  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215. doi:10.1071/FP02015

    Article  CAS  Google Scholar 

  • Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48. doi:10.1046/j.1365-3040.1999.00371.x

    Article  Google Scholar 

  • Fukshansky L (1981) Optical properties of plants. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, London, pp 21–40

    Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    CAS  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    PubMed  CAS  Google Scholar 

  • Joshi MK, Mohanty P (1995) Probing photosynthetic performance by chlorophyll a fluorescence: analysis and interpretation of fluorescence parameters. J Sci Ind Res (India) 54:155–174

    CAS  Google Scholar 

  • Karabourniotis G, Bornman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23:423–430. doi:10.1046/j.1365-3040.2000.00558.x

    Article  Google Scholar 

  • Kolb CA, Schreiber U, Gademann R, Pfündel EE (2005) UV-A screening in plants determined using a new portable fluorometer. Photosynthetica 43(3):371–377. doi:10.1007/s11099-005-0061-7

    Article  Google Scholar 

  • Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187. doi:10.1111/j.1399-3054.1992.tb01328.x

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi:10.1146/annurev.pp.42.060191.001525

    Article  CAS  Google Scholar 

  • Li PM, Fang P, Wang WB, Gao HY, Peng T (2007) The higher resistance to chilling stress in adaxial side of Rumex K-1 leaves is accompanied with higher photochemical and non-photochemical quenching. Photosynthetica 45(4):496–502. doi:10.1007/s11099-007-0086-1

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19:S29–S85

    Google Scholar 

  • Louis J, Cerovic ZG, Moya I (2006) Quantitative study of fluorescence excitation and emission spectra of bean leaves. J Photochem Photobiol B Biol 85:65–71. doi:10.1016/j.jphotobiol.2006.03.009

    Article  CAS  Google Scholar 

  • Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25. doi:10.1023/A:1010676111026

    Article  PubMed  Google Scholar 

  • Medrano H, Bota J, Abadía A, Sampól B, Escalona JM, Flexas J (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol 29:1197–1207. doi:10.1071/FP02016

    Article  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94:607–613

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97:886–893

    PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25:403–412

    Article  CAS  Google Scholar 

  • Morales F, Moise N, Quílez R, Abadía A, Abadía J, Moya I (2001) Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of photosystem II. Photosynth Res 70:207–220. doi:10.1023/A:1017965229788

    Article  PubMed  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J, Montserrat G, Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp and Quercus coccifera L. to Mediterranean stress conditions. Trees (Berl) 16:504–510. doi:10.1007/s00468-002-0195-1

    Article  CAS  Google Scholar 

  • Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WWIII, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht, pp 65–85

    Chapter  Google Scholar 

  • Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548. doi:10.1046/j.1365-3040.2000.00563.x

    Article  CAS  Google Scholar 

  • Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961

    Article  PubMed  CAS  Google Scholar 

  • Osborne BA, Raven JA (1986) Light absorption by plants and its implications for photosynthesis. Biol Rev Camb Philos Soc 61:1–61. doi:10.1111/j.1469-185X.1986.tb00425.x

    Article  CAS  Google Scholar 

  • Outlaw WH Jr (1987) A minireview: comparative biochemistry of photosynthesis in palisades cells, spongy cells, and guard cells of C3 leaves. Prog Photosynth Res 4:265–272

    CAS  Google Scholar 

  • Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 319–371

    Google Scholar 

  • Parkhurst DF (1986) Internal leaf structure: a three dimensional perspective. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 215–249

    Google Scholar 

  • Peguero-Pina JJ (2008) Empleo de técnicas no destructivas en la sintomatología de la respuesta de la vegetación arbórea de interés forestal a distintos factores abióticos de estrés. PhD Thesis, University of Lérida, Spain

  • Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrín E, Moya I (2008) Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 156:1–11. doi:10.1007/s00442-007-0957-y

    Article  PubMed  Google Scholar 

  • Peterson RB, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 70:185–196. doi:10.1023/A:1017952500015

    Article  PubMed  CAS  Google Scholar 

  • Quílez R, Abadía A, Abadía J (1992) Characteristics of thylakoids and photosystem II membrane preparations from iron deficient and iron sufficient sugar beet (Beta vulgaris L.). J Plant Nutr 15:1809–1819

    Article  Google Scholar 

  • Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 587–619

    Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In: Progress in botany. Springer Verlag, Berlin, Heildelberg, pp 151–173

    Google Scholar 

  • Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36:65–72. doi:10.1007/BF00018076

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a noninvasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer-Verlag, Berlin, pp 49–70

    Google Scholar 

  • Schreiber U, Kühl M, Klimant I, Reising H (1996) Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res 47:103–109. doi:10.1007/BF00017758

    Article  CAS  Google Scholar 

  • Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Opt 22:1402–1408

    PubMed  CAS  Google Scholar 

  • Sun J, Nishio JN, Vogelmann TC (1996) High-light effects on CO2 fixation gradients across leaves. Plant Cell Environ 19:1261–1271. doi:10.1111/j.1365-3040.1996.tb00004.x

    Article  Google Scholar 

  • Sun J, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026

    CAS  Google Scholar 

  • Terashima I (1989) Productive structure of a leaf. In: Briggs WR (ed) Photosynthesis: proceedings of the C.S. French symposium, Alan R Liss, Inc, New York, pp 207–226

  • Terashima I, Inoue Y (1985a) Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. Plant Cell Physiol 26:63–75

    CAS  Google Scholar 

  • Terashima I, Inoue Y (1985b) Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol 26:781–785

    CAS  Google Scholar 

  • Terashima I, Saeki T (1983) Light environment within a leaf. I. Optical properties and paradermal sections of Camelia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24:1493–1501

    CAS  Google Scholar 

  • Terashima I, Sakaguchi S, Hara N (1986) Intra-leaf and intracellular gradients in chloroplast ultrastructure of dorsiventral leaves illuminated from the adaxial or abaxial side during their development. Plant Cell Physiol 27:1023–1031

    Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640. doi:10.1111/j.1365-3040.1995.tb00564.x

    Article  CAS  Google Scholar 

  • van Kooten O, Snel JHF (1990) The use of chlorophyll fluorescence in plant stress physiology. Photosynth Res 25:147–150. doi:10.1007/BF00033156

    Article  Google Scholar 

  • Vogelmann TC (1986) Light within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants. Martinus Nijhoff, Dordrecht, pp 307–337

    Google Scholar 

  • Vogelmann TC (1989) Penetration of light into plants. Photochem Photobiol 50(6):895–902. doi:10.1111/j.1751-1097.1989.tb02919.x

    Article  Google Scholar 

  • Vogelmann TC, Björn LO (1986) Plants as light traps. Physiol Plant 68:704–708. doi:10.1111/j.1399-3054.1986.tb03421.x

    Article  Google Scholar 

  • Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323. doi:10.1046/j.1365-3040.2002.00910.x

    Article  Google Scholar 

  • Vogelmann TC, Han T (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ 23:1303–1311. doi:10.1046/j.1365-3040.2000.00649.x

    Article  CAS  Google Scholar 

  • Vogelmann TC, Martin G (1993) The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant Cell Environ 16:65–72. doi:10.1111/j.1365-3040.1993.tb00845.x

    Article  Google Scholar 

  • Vogelmann TC, Bornman JF, Josserand S (1989) Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. Philos Trans R Soc Lond B Biol Sci 323:411–421. doi:10.1098/rstb.1989.0020

    Article  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi:10.1007/BF00384257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by INIA project RTA01-071-C3-1 (Ministerio de Educación y Ciencia), and Gobierno de Aragón. Authors acknowledge comments of two anonymous reviewers that largely improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermín Morales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peguero-Pina, J.J., Gil-Pelegrín, E. & Morales, F. Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue. Photosynth Res 99, 49–61 (2009). https://doi.org/10.1007/s11120-008-9393-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9393-z

Keywords

Navigation