Photosynthesis Research

, Volume 99, Issue 1, pp 49–61 | Cite as

Photosystem II efficiency of the palisade and spongy mesophyll in Quercus coccifera using adaxial/abaxial illumination and excitation light sources with wavelengths varying in penetration into the leaf tissue

  • José Javier Peguero-Pina
  • Eustaquio Gil-Pelegrín
  • Fermín Morales
Regular Paper


The existence of major vertical gradients within the leaf is often overlooked in studies of photosynthesis. These gradients, which involve light heterogeneity, cell composition, and CO2 concentration across the mesophyll, can generate differences in the maximum potential PSII efficiency (F V/F M or F V/F P) of the different cell layers. Evidence is presented for a step gradient of F V/F P ratios across the mesophyll, from the adaxial (palisade parenchyma, optimal efficiencies) to the abaxial (spongy parenchyma, sub-optimal efficiencies) side of Quercus coccifera leaves. For this purpose, light sources with different wavelengths that penetrate more or less deep within the leaf were employed, and measurements from the adaxial and abaxial sides were performed. To our knowledge, this is the first report where a low photosynthetic performance in the abaxial side of leaves is accompanied by impaired F V/F P ratios. This low photosynthetic efficiency of the abaxial side could be related to the occurrence of bundle sheath extensions, which facilitates the penetration of high light intensities deep within the mesophyll. Also, leaf morphology (twisted in shape) and orientation (with a marked angle from the horizontal plane) imply direct sunlight illumination of the abaxial side. The existence of cell layers within leaves with different photosynthetic efficiencies makes appropriate the evaluation of how light penetrates within the mesophyll when using Chl fluorescence or gas exchange techniques that use different wavelengths for excitation and/or for driving photosynthesis.


Abaxial Adaxial Cell layers Chlorophyll fluorescence Photosynthesis Step gradient Mesophyll 



Net CO2 uptake


Bundle sheath extensions




Electron transport rate

ΦPSII and Φexc.

Actual and intrinsic photosystem II efficiencies, respectively

FO and \(F^{\prime}_{O}\)

Minimal Chl fluorescence yield in the dark or during light adaptation, respectively

FM and \(F^{\prime}_{M}\)

Maximal Chl fluorescence yield in the dark or during light adaptation, respectively


Chl fluorescence at steady-state photosynthesis


Chl fluorescence at the peak of the continuous fluorescence induction curve

FV and \(F^{\prime}_{V}\)

FM − FO or FP − FO, and \(F^{\prime}_{M}\) − \(F^{\prime}_{O}\), respectively


Stomatal conductance


Non-photochemical quenching


Photosynthetic photon flux density


Photosystems I and II, respectively


Photochemical quenching



This work was supported by INIA project RTA01-071-C3-1 (Ministerio de Educación y Ciencia), and Gobierno de Aragón. Authors acknowledge comments of two anonymous reviewers that largely improved this manuscript.


  1. Abadía A, Gil E, Morales F, Montañés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant Cell Environ 19:685–694. doi: 10.1111/j.1365-3040.1996.tb00403.x CrossRefGoogle Scholar
  2. Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183–192. doi: 10.1023/A:1004451728237 CrossRefGoogle Scholar
  3. Agati G, Cerovic ZG, Moya I (2000) The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: the role of photosystem I contribution to the 735 nm fluorescence band. Photochem Photobiol 72(1):75–84. doi:10.1562/0031-8655(2000)072<0075:TEODTU>2.0.CO;2PubMedCrossRefGoogle Scholar
  4. Balaguer L, Martínez-Ferri E, Valladares F, Pérez-Corona ME, Baquedano FJ, Castillo FJ, Manrique E (2001) Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Funct Ecol 15:124–135. doi: 10.1046/j.1365-2435.2001.00505.x CrossRefGoogle Scholar
  5. Belkhodja R, Morales F, Quílez R, López-Millán AF, Abadía A, Abadía J (1998) Iron deficiency causes changes in chlorophyll fluorescence due to reduction in the dark of the photosystem II acceptor side. Photosynth Res 56:265–276. doi: 10.1023/A:1006039917599 CrossRefGoogle Scholar
  6. Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185. doi: 10.1007/BF00033159 CrossRefGoogle Scholar
  7. Bilger W, Veit M, Schreiber L, Schreiber U (1997) Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiol Plant 101:754–763. doi: 10.1111/j.1399-3054.1997.tb01060.x CrossRefGoogle Scholar
  8. Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504. doi: 10.1007/BF00402983 CrossRefGoogle Scholar
  9. Bolhar-Nordenkampf HR, Long PS, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514. doi: 10.2307/2389624 CrossRefGoogle Scholar
  10. Bornman JF, Vogelmann TC, Martin G (1991) Measurement of chlorophyll fluorescence within leaves using a fiber optic microprobe. Plant Cell Environ 14:719–725. doi: 10.1111/j.1365-3040.1991.tb01546.x CrossRefGoogle Scholar
  11. Briantais JM, Vernotte C, Krause GH, Weis E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 539–583Google Scholar
  12. Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271. doi: 10.1007/s11120-007-9187-8 PubMedCrossRefGoogle Scholar
  13. Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I (1999) Ultraviolet-induced fluorescence for plant monitoring: present state and prospects. Agronomie 19:543–578. doi: 10.1051/agro:19990701 CrossRefGoogle Scholar
  14. Cerovic ZG, Ounis A, Cartelat A, Latouche G, Goulas Y, Meyer S, Moya I (2002) The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ 25:1663–1676. doi: 10.1046/j.1365-3040.2002.00942.x CrossRefGoogle Scholar
  15. Cui M, Vogelmann TC, Smith WK (1991) Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. Plant Cell Environ 14:493–500. doi: 10.1111/j.1365-3040.1991.tb01519.x CrossRefGoogle Scholar
  16. Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23CrossRefGoogle Scholar
  17. Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104. doi: 10.1046/j.1469-8137.1999.00440.x CrossRefGoogle Scholar
  18. Evans JR, Vogelmann TC (2006) Photosynthesis within isobilateral Eucalyptus pauciflora leaves. New Phytol 171:771–782. doi: 10.1111/j.1469-8137.2006.01789.x PubMedCrossRefGoogle Scholar
  19. Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110:339–346PubMedGoogle Scholar
  20. Evans JR, Jakobsen I, Ögren E (1993) Photosynthetic light response curves. 2. Gradients of light absorption and photosynthetic capacity. Planta 189:191–200. doi: 10.1007/BF00195076 CrossRefGoogle Scholar
  21. Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215. doi: 10.1071/FP02015 CrossRefGoogle Scholar
  22. Flexas J, Escalona JM, Medrano H (1999) Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ 22:39–48. doi: 10.1046/j.1365-3040.1999.00371.x CrossRefGoogle Scholar
  23. Fukshansky L (1981) Optical properties of plants. In: Smith H (ed) Plants and the daylight spectrum. Academic Press, London, pp 21–40Google Scholar
  24. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92Google Scholar
  25. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160Google Scholar
  26. Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystems I and II in pea leaves. Plant Physiol 90:1029–1034PubMedGoogle Scholar
  27. Joshi MK, Mohanty P (1995) Probing photosynthetic performance by chlorophyll a fluorescence: analysis and interpretation of fluorescence parameters. J Sci Ind Res (India) 54:155–174Google Scholar
  28. Karabourniotis G, Bornman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23:423–430. doi: 10.1046/j.1365-3040.2000.00558.x CrossRefGoogle Scholar
  29. Kolb CA, Schreiber U, Gademann R, Pfündel EE (2005) UV-A screening in plants determined using a new portable fluorometer. Photosynthetica 43(3):371–377. doi: 10.1007/s11099-005-0061-7 CrossRefGoogle Scholar
  30. Krall JP, Edwards GE (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol Plant 86:180–187. doi: 10.1111/j.1399-3054.1992.tb01328.x CrossRefGoogle Scholar
  31. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349. doi: 10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  32. Li PM, Fang P, Wang WB, Gao HY, Peng T (2007) The higher resistance to chilling stress in adaxial side of Rumex K-1 leaves is accompanied with higher photochemical and non-photochemical quenching. Photosynthetica 45(4):496–502. doi: 10.1007/s11099-007-0086-1 CrossRefGoogle Scholar
  33. Lichtenthaler HK, Rinderle U (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Crit Rev Anal Chem 19:S29–S85Google Scholar
  34. Louis J, Cerovic ZG, Moya I (2006) Quantitative study of fluorescence excitation and emission spectra of bean leaves. J Photochem Photobiol B Biol 85:65–71. doi: 10.1016/j.jphotobiol.2006.03.009 CrossRefGoogle Scholar
  35. Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25. doi: 10.1023/A:1010676111026 PubMedCrossRefGoogle Scholar
  36. Medrano H, Bota J, Abadía A, Sampól B, Escalona JM, Flexas J (2002) Effects of drought on light-energy dissipation mechanisms in high-light-acclimated, field-grown grapevines. Funct Plant Biol 29:1197–1207. doi: 10.1071/FP02016 CrossRefGoogle Scholar
  37. Morales F, Abadía A, Abadía J (1990) Characterization of the xanthophyll cycle and other photosynthetic pigment changes induced by iron deficiency in sugar beet (Beta vulgaris L.). Plant Physiol 94:607–613PubMedCrossRefGoogle Scholar
  38. Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97:886–893PubMedGoogle Scholar
  39. Morales F, Abadía A, Abadía J (1998) Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. Aust J Plant Physiol 25:403–412CrossRefGoogle Scholar
  40. Morales F, Moise N, Quílez R, Abadía A, Abadía J, Moya I (2001) Iron deficiency interrupts energy transfer from a disconnected part of the antenna to the rest of photosystem II. Photosynth Res 70:207–220. doi: 10.1023/A:1017965229788 PubMedCrossRefGoogle Scholar
  41. Morales F, Abadía A, Abadía J, Montserrat G, Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp and Quercus coccifera L. to Mediterranean stress conditions. Trees (Berl) 16:504–510. doi: 10.1007/s00468-002-0195-1 CrossRefGoogle Scholar
  42. Morales F, Abadía A, Abadía J (2006) Photoinhibition and photoprotection under nutrient deficiencies, drought and salinity. In: Demmig-Adams B, Adams WWIII, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht, pp 65–85CrossRefGoogle Scholar
  43. Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548. doi: 10.1046/j.1365-3040.2000.00563.x CrossRefGoogle Scholar
  44. Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961PubMedCrossRefGoogle Scholar
  45. Osborne BA, Raven JA (1986) Light absorption by plants and its implications for photosynthesis. Biol Rev Camb Philos Soc 61:1–61. doi: 10.1111/j.1469-185X.1986.tb00425.x CrossRefGoogle Scholar
  46. Outlaw WH Jr (1987) A minireview: comparative biochemistry of photosynthesis in palisades cells, spongy cells, and guard cells of C3 leaves. Prog Photosynth Res 4:265–272Google Scholar
  47. Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 319–371Google Scholar
  48. Parkhurst DF (1986) Internal leaf structure: a three dimensional perspective. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 215–249Google Scholar
  49. Peguero-Pina JJ (2008) Empleo de técnicas no destructivas en la sintomatología de la respuesta de la vegetación arbórea de interés forestal a distintos factores abióticos de estrés. PhD Thesis, University of Lérida, SpainGoogle Scholar
  50. Peguero-Pina JJ, Morales F, Flexas J, Gil-Pelegrín E, Moya I (2008) Photochemistry, remotely sensed physiological reflectance index and de-epoxidation state of the xanthophyll cycle in Quercus coccifera under intense drought. Oecologia 156:1–11. doi: 10.1007/s00442-007-0957-y PubMedCrossRefGoogle Scholar
  51. Peterson RB, Oja V, Laisk A (2001) Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis. Photosynth Res 70:185–196. doi: 10.1023/A:1017952500015 PubMedCrossRefGoogle Scholar
  52. Quílez R, Abadía A, Abadía J (1992) Characteristics of thylakoids and photosystem II membrane preparations from iron deficient and iron sufficient sugar beet (Beta vulgaris L.). J Plant Nutr 15:1809–1819CrossRefGoogle Scholar
  53. Renger G, Schreiber U (1986) Practical applications of fluorometric methods to algae and higher plant research. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 587–619Google Scholar
  54. Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. In: Progress in botany. Springer Verlag, Berlin, Heildelberg, pp 151–173Google Scholar
  55. Schreiber U, Neubauer C, Schliwa U (1993) PAM fluorometer based on medium-frequency pulsed Xe-flash measuring light: a highly sensitive new tool in basic and applied photosynthesis research. Photosynth Res 36:65–72. doi: 10.1007/BF00018076 CrossRefGoogle Scholar
  56. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a noninvasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer-Verlag, Berlin, pp 49–70Google Scholar
  57. Schreiber U, Kühl M, Klimant I, Reising H (1996) Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Photosynth Res 47:103–109. doi: 10.1007/BF00017758 CrossRefGoogle Scholar
  58. Seyfried M, Fukshansky L (1983) Light gradients in plant tissue. Appl Opt 22:1402–1408PubMedGoogle Scholar
  59. Sun J, Nishio JN, Vogelmann TC (1996) High-light effects on CO2 fixation gradients across leaves. Plant Cell Environ 19:1261–1271. doi: 10.1111/j.1365-3040.1996.tb00004.x CrossRefGoogle Scholar
  60. Sun J, Nishio JN, Vogelmann TC (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39:1020–1026Google Scholar
  61. Terashima I (1989) Productive structure of a leaf. In: Briggs WR (ed) Photosynthesis: proceedings of the C.S. French symposium, Alan R Liss, Inc, New York, pp 207–226Google Scholar
  62. Terashima I, Inoue Y (1985a) Palisade tissue chloroplasts and spongy tissue chloroplasts in spinach: biochemical and ultrastructural differences. Plant Cell Physiol 26:63–75Google Scholar
  63. Terashima I, Inoue Y (1985b) Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol 26:781–785Google Scholar
  64. Terashima I, Saeki T (1983) Light environment within a leaf. I. Optical properties and paradermal sections of Camelia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24:1493–1501Google Scholar
  65. Terashima I, Sakaguchi S, Hara N (1986) Intra-leaf and intracellular gradients in chloroplast ultrastructure of dorsiventral leaves illuminated from the adaxial or abaxial side during their development. Plant Cell Physiol 27:1023–1031Google Scholar
  66. Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640. doi: 10.1111/j.1365-3040.1995.tb00564.x CrossRefGoogle Scholar
  67. van Kooten O, Snel JHF (1990) The use of chlorophyll fluorescence in plant stress physiology. Photosynth Res 25:147–150. doi: 10.1007/BF00033156 CrossRefGoogle Scholar
  68. Vogelmann TC (1986) Light within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in Plants. Martinus Nijhoff, Dordrecht, pp 307–337Google Scholar
  69. Vogelmann TC (1989) Penetration of light into plants. Photochem Photobiol 50(6):895–902. doi: 10.1111/j.1751-1097.1989.tb02919.x CrossRefGoogle Scholar
  70. Vogelmann TC, Björn LO (1986) Plants as light traps. Physiol Plant 68:704–708. doi: 10.1111/j.1399-3054.1986.tb03421.x CrossRefGoogle Scholar
  71. Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323. doi: 10.1046/j.1365-3040.2002.00910.x CrossRefGoogle Scholar
  72. Vogelmann TC, Han T (2000) Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles. Plant Cell Environ 23:1303–1311. doi: 10.1046/j.1365-3040.2000.00649.x CrossRefGoogle Scholar
  73. Vogelmann TC, Martin G (1993) The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant Cell Environ 16:65–72. doi: 10.1111/j.1365-3040.1993.tb00845.x CrossRefGoogle Scholar
  74. Vogelmann TC, Bornman JF, Josserand S (1989) Photosynthetic light gradients and spectral regime within leaves of Medicago sativa. Philos Trans R Soc Lond B Biol Sci 323:411–421. doi: 10.1098/rstb.1989.0020 CrossRefGoogle Scholar
  75. von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387. doi: 10.1007/BF00384257 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • José Javier Peguero-Pina
    • 1
  • Eustaquio Gil-Pelegrín
    • 1
  • Fermín Morales
    • 2
  1. 1.Unidad de Recursos ForestalesCentro de Investigación y Tecnología Agroalimentaria, Gobierno de AragónZaragozaSpain
  2. 2.Department of Plant NutritionExperimental Station of Aula Dei, CSICZaragozaSpain

Personalised recommendations