Skip to main content
Log in

Directed mutagenesis of the transmembrane domain of the PsbL subunit of photosystem II in Synechocystis sp. PCC 6803

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The PsbL protein is one of three low-molecular-weight subunits identified at the monomer–monomer interface of photosystem II (PSII) [Ferreira et al. (2004) Science 303:1831–1838; Loll et al. (2005) Nature 438:1040–1044]. We have employed site-directed mutagenesis to investigate the role of PsbL in Synechocystis sp. PCC 6803 cells. Truncation of the C-terminus by deleting the last four residues (Tyr-Phe-Phe-Asn) prevented association of PsbL with the CP43-less monomeric sub-complex and therefore blocked PSII assembly resulting in an obligate photoheterotrophic strain. Replacement of these residues with Ala created four photoautotrophic mutants. Compared to wild type, the F37A, F38A, and N39A strains had reduced levels of assembled PSII centers and F37A and F38A cells were readily photodamaged. In contrast, Y36A and Y36F mutants were similar to wild type. However, each of these strains had elevated levels of the CP43-less inactive monomeric complex. Mutations targeting a putative hydrogen bond between Arg-16 and sulfoquinovosyldiacylglycerol resulted in mutants that were also highly susceptible to photodamage. Similarly mutations targeting a conserved Tyr residue (Tyr-20) also destabilized PSII under high light and suggest that Tyr-20–lipid interactions or interactions of Tyr-20 with PsbT influence the ability of PSII to recover from photodamage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BN-PAGE:

Blue-native polyacrylamide gel electrophoresis

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

DM:

n-dodecyl β-d-maltoside

DMBQ:

2,5-dimethyl-p-benzoquinone

EDTA:

Ethylenediamine tetra-acetic acid (di-sodium salt)

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

Kb:

Kilobases

kDa:

Kilodaltons

OD:

Optical density

PCC:

Pasteur Culture Collection

PCR:

Polymerase chain reaction

PQ:

Plastoquinone

PSII:

Photosystem II

QA :

Primary quinone electron acceptor of photosystem II

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

SDS polyacrylamide gel electrophoresis

TES:

2-[tris(hydroxymethyl)methyl]amino-1-ethanesulfonic acid

Tris:

Tris(hydroxymethyl)aminomethane

References

  • Anbudurai P, Pakrasi H (1993) Mutational analysis of the PsbL protein of photosystem II in the cyanobacterium Synechocystis sp. PCC 6803. Z Naturforsch 48:267–274

    CAS  Google Scholar 

  • Bebenek K, Kunkel T (1989) The use of native T7 DNA polymerase for site-directed mutagenesis. Nucleic Acids Res 17:5408. doi:10.1093/nar/17.13.5408

    Article  PubMed  CAS  Google Scholar 

  • Bentley FK, Luo H, Dilbeck P, Burnap RL, Eaton-Rye JJ (2008) Effects of inactivating psbM and psbT on photodamage and assembly of photosystem II in Synechocystis sp. PCC 6803. Biochemistry. doi:10.1021/bi800804h

    PubMed  Google Scholar 

  • Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 95–120

    Google Scholar 

  • Eaton-Rye JJ (2004) The construction of gene knockouts in the cyanobacterium Synechocystis sp. PCC 6803. In: Carpentier R (ed) Methods of molecular biology, photosynthesis research protocols. Humana Press, Totowa, pp 309–324

    Chapter  Google Scholar 

  • Eaton-Rye JJ, Putnam-Evans C (2005) The CP47 and CP43 core antenna components. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 45–70

    Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Güler S, Seeliger A, Hartel H, Renger C, Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyldiacylglycerol. J Biol Chem 271:7501–7507. doi:10.1074/jbc.271.13.7501

    Article  PubMed  Google Scholar 

  • Hoshida H, Sugiyama R, Nakano Y, Shiina T, Toyoshima Y (1997) Electron paramagnetic resonance and mutational analysis revealed the involvement of photosystem II-L subunit in the oxidation step of Tyr-Z by P680 + to form the Tyr-Z+P680Pheo state in photosystem II. Biochemistry 36:12053–12061. doi:10.1021/bi9710885

    Article  PubMed  CAS  Google Scholar 

  • Juntarajumnong W, Hirani TA, Simpson JM, Incharoensakdi A, Eaton-Rye JJ (2007) Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS-SphR two-component regulatory system. Arch Microbiol 188:389–402. doi:10.1007/s00203-007-0259-0

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Renger G (2007) Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. Photosynth Res 94:183–202. doi:10.1007/s11120-007-9201-1

    Article  PubMed  CAS  Google Scholar 

  • Kitamura K, Ozawa S, Shiina T, Toyoshima Y (1994) L protein, encoded by psbL restores normal functioning of the primary quinone acceptor, QA, in isolated D1/D2/CP47/Cytb–559/I photosystem II reaction center core complex. FEBS Lett 354:113–116. doi:10.1016/0014-5793(94)01089-7

    Article  PubMed  CAS  Google Scholar 

  • Kunkel T (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492. doi:10.1073/pnas.82.2.488

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685. doi:10.1038/227680a0

    Article  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Eaton-Rye J (2008) Mutations in CP47 that target putative hydrogen bonds with sulfoquinovosyl-diacylglycerol. In: Allen F, Osmond B, Golbeck J, Gant E (eds) Energy from the sun. Springer, Heidelberg, pp 737–739

    Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N, Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553:109–112. doi:10.1016/S0014-5793(03)00981-5

    Article  PubMed  CAS  Google Scholar 

  • Morgan TR, Shand JA, Clarke SM, Eaton-Rye JJ (1998) Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47. Biochemistry 37:14437–14449. doi:10.1021/bi980404s

    Article  PubMed  CAS  Google Scholar 

  • Namba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of d-1 and d-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112. doi:10.1073/pnas.84.1.109

    Article  Google Scholar 

  • Nixon PJ, Sarcina M, Diner BA (2005) The CP47 and CP43 core antenna components. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 71–94

    Google Scholar 

  • Oka A, Sugisake H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 295:1225–1236

    Google Scholar 

  • Ozawa S, Kobayashi T, Sugiyama R, Hoshida H, Shiina T, Toyoshima Y (1997) Role of PSII-L complex. 1. Over-production of wild-type and mutant versions of PSII-L protein and reconstitution into the PSII core complex. Plant Mol Biol 34:151–161. doi:10.1023/A:1005800909495

    Article  PubMed  CAS  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N, Aro E-M (2005) Synthesis and assembly of thylakoid protein complexes: multiple assembly steps of photosystem II. Biochem J 388:159–168. doi:10.1042/BJ20042098

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Mizusawa N, Ohashi S, Kobayashi M, Wada H (2007a) Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol 144:1336–1346. doi:10.1104/pp.107.098731

    Article  PubMed  CAS  Google Scholar 

  • Sakurai I, Mizusawa N, Wada H, Sato N (2007b) Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145:1361–1370. doi:10.1104/pp.107.106781

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Yamamoto Y (2007) The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center. Photosynth Res 94:203–215. doi:10.1007/s11120-007-9191-z

    Article  PubMed  CAS  Google Scholar 

  • Schägger H (1994) Electrophoretic isolation of membrane-proteins from acrylamide gels. Appl Biochem Biotechnol 48:185–203. doi:10.1007/BF02788741

    Article  Google Scholar 

  • Sugita C, Ogata K, Shikata M, Jikuya H, Takano J, Furumichi M, Kanehisa M, Omata T, Sugiura M, Sugita M (2007) Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth Res 93:55–67. doi:10.1007/s11120-006-9122-4

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815. doi:10.1021/bi048394k

    Article  PubMed  CAS  Google Scholar 

  • Suorsa M, Regel RE, Paakkarinen V, Battchikova N, Herrmann RG, Aro E-M (2004) Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits PsbL and PsbJ. Eur J Biochem 271:96–107. doi:10.1046/j.1432-1033.2003.03906.x

    Article  PubMed  CAS  Google Scholar 

  • Swiatek M, Regel R, Meurer J, Wanner G, Pakrasi H, Ohad I, Herrmann R (2003) Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: the psbEFLJ operon in Nicotiana tabacum. Mol Genet Genomics 268:699–710

    PubMed  CAS  Google Scholar 

  • Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  • Thornton LE, Roose JL, Pakrasi HB, Ikeuchi M (2005) The low molecular weight proteins of photosystem II. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, pp 121–138

    Google Scholar 

  • Toyoshima Y, Iwata T, Nakano Y, Hoshida H (1998) Tyr34 in PSII-L protein is essential for oxidation of Tyr-Z in PSII. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol II. Kluwer Academic Publishers, Dordrecht, pp 1383–1386

    Google Scholar 

  • Vermaas W, Charité J, Shen G (1990) QA binding to D2 contributes to the functional and structural integrity of photosystem-II. Z Naturforsch 45:359–365

    CAS  Google Scholar 

  • Williams J (1988) Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167:766–778. doi:10.1016/0076-6879(88)67088-1

    Article  CAS  Google Scholar 

  • Whitehead TP, Kricka LJ, Carter TJN, Thorpe GHG (1979) Analytical luminescence: its potential in the clinical laboratory. Clin Chem 25:1531–1546

    Google Scholar 

  • Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II: the light-driven water:plastoquinone oxidoreductase, advances in photosynthesis and respiration, vol 22. Springer, Dordrecht

    Google Scholar 

Download references

Acknowledgment

This work was supported by a grant (UOO309) from the New Zealand Marsden Fund to J.J.E.-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian J. Eaton-Rye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, H., Eaton-Rye, J.J. Directed mutagenesis of the transmembrane domain of the PsbL subunit of photosystem II in Synechocystis sp. PCC 6803. Photosynth Res 98, 337–347 (2008). https://doi.org/10.1007/s11120-008-9375-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9375-1

Keywords

Navigation