Advertisement

Photosynthesis Research

, 98:643 | Cite as

Comparison of bacterial reaction centers and photosystem II

  • László Kálmán
  • JoAnn C. Williams
  • James P. Allen
Review

Abstract

In photosynthetic organisms, the utilization of solar energy to drive electron and proton transfer reactions across membranes is performed by pigment–protein complexes including bacterial reaction centers (BRCs) and photosystem II. The well-characterized BRC has served as a structural and functional model for the evolutionarily-related photosystem II for many years. Even though these complexes transfer electrons and protons across cell membranes in analogous manners, they utilize different secondary electron donors. Photosystem II has the unique ability to abstract electrons from water, while BRCs use molecules with much lower potentials as electron donors. This article compares the two complexes and reviews the factors that give rise to the functional differences. Also discussed are the modifications that have been performed on BRCs so that they perform reactions, such as amino acid and metal oxidation, which occur in photosystem II.

Keywords

Photosynthesis Reaction center Tyrosine oxidation Manganese Oxygen evolving complex Rhodobacter sphaeroides Purple bacteria 

Abbreviations

BChl

Bacteriochlorophyll monomer

BPheo

Bacteriopheophytin

BRC

Bacterial reaction center

Chl

Chlorophyll

EPR

Electron paramagnetic resonance

P

Special pair of bacteriochlorophylls, primary electron donor of BRC

PSII

Photosystem II

P680

Primary electron donor of PSII

pKa

Negative logarithm of the proton dissociation constant

Rb

Rhodobacter

YZ and YD

Redox active tyrosine residues of PSII

Notes

Acknowledgment

Our work is supported by the National Science Foundation, grant MCB0640002.

References

  1. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734. doi: 10.1073/pnas.84.16.5730 PubMedCrossRefGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166. doi: 10.1073/pnas.84.17.6162 PubMedCrossRefGoogle Scholar
  3. Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D et al (1996) Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35:6612–6619. doi: 10.1021/bi9528311 PubMedCrossRefGoogle Scholar
  4. Allen JP, Cordova JM, Jolley CC, Murray TA, Schneider JW, Woodbury NW et al (2008) EPR, ENDOR and Special TRIPLE measurements of P•+ in wild type and modified reaction centers from Rb. sphaeroides. Photosynth Res. doi: 10.1007/s11120-008-9346-6 Google Scholar
  5. Artz K, Williams JC, Allen JP, Lendzian F, Rautter J, Lubitz W (1997) Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94:13582–13587. doi: 10.1073/pnas.94.25.13582 PubMedCrossRefGoogle Scholar
  6. Baranov SV, Tyryshkin AM, Katz D, Dismukes GC, Ananyev GM, Klimov VV (2004) Bicarbonate in a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Biochemistry 43:2070–2079. doi: 10.1021/bi034858n PubMedCrossRefGoogle Scholar
  7. Barter LMC, Durrant JR, Klug DR (2003) A quantitative structure-function relationship for the photosystem II reaction center: supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100:946–951. doi: 10.1073/pnas.0136891100 PubMedCrossRefGoogle Scholar
  8. Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biol Sci 23:94–97. doi: 10.1016/S0968-0004(98)01186-4 CrossRefGoogle Scholar
  9. Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF et al (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81. doi: 10.1038/416076a PubMedCrossRefGoogle Scholar
  11. Bylina EJ, Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85:7226–7230. doi: 10.1073/pnas.85.19.7226 PubMedCrossRefGoogle Scholar
  12. Camara-Artigas A, Magee C, Goetsch A, Allen JP (2002) The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 angstrom resolution. Photosynth Res 74:87–93. doi: 10.1023/A:1020882402389 PubMedCrossRefGoogle Scholar
  13. Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta 1503:164–186. doi: 10.1016/S0005-2728(00)00221-8 PubMedCrossRefGoogle Scholar
  14. Debus RJ, Feher G, Okamura MY (1985) LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry 24:2488–2500. doi: 10.1021/bi00331a015 CrossRefGoogle Scholar
  15. Dekker JP, van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208. doi: 10.1023/A:1006468024245 PubMedCrossRefGoogle Scholar
  16. Des Marais DJ (2001) When did photosynthesis emerge on earth? Science 289:1703–1705Google Scholar
  17. Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163. doi: 10.1016/S0005-2728(00)00220-6 PubMedCrossRefGoogle Scholar
  18. Diner BA, Britt RD (2005) The redox-active tyrosines YZ and YD. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Heidelberg, pp 207–233Google Scholar
  19. Diner BA, Tang XS, Zheng M, Dismukes GC, Force DA, Randall DW et al (1995) Environment and function of the redox active tyrosines of photosystem II. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 229–234Google Scholar
  20. Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J et al (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281. doi: 10.1021/bi010121r PubMedCrossRefGoogle Scholar
  21. Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175. doi: 10.1073/pnas.061514798 PubMedCrossRefGoogle Scholar
  22. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756–758. doi: 10.1126/science.289.5480.756 PubMedCrossRefGoogle Scholar
  23. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  24. Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, HeidelbergGoogle Scholar
  25. Haffa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP et al (2002) The dependence of the initial electron-transfer rate on driving force in Rhodobacter sphaeroides reaction centers. J Phys Chem B 106:7376–7384. doi: 10.1021/jp0257552 CrossRefGoogle Scholar
  26. Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956. doi: 10.1126/science.277.5334.1953 PubMedCrossRefGoogle Scholar
  27. Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2008) The purple phototrophic bacteria. Springer, HeidelbergGoogle Scholar
  28. Ishikita H, Saenger W, Biesiadka B, Knapp EW (2006) How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proc Natl Acad Sci USA 103:9855–9860. doi: 10.1073/pnas.0601446103 PubMedCrossRefGoogle Scholar
  29. Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494. doi: 10.1021/bi012131y PubMedCrossRefGoogle Scholar
  30. Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W et al (2002) Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B 106:11859–11869. doi: 10.1021/jp021024q CrossRefGoogle Scholar
  31. Kálmán L, LoBrutto R, Allen JP, Williams JC (1999) Modified reaction centres oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699. doi: 10.1038/45300 CrossRefGoogle Scholar
  32. Kálmán L, Williams JC, Allen JP (2003a) Proton release upon oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. FEBS Lett 545:193–198. doi: 10.1016/S0014-5793(03)00532-5 PubMedCrossRefGoogle Scholar
  33. Kálmán L, LoBrutto R, Narváez AJ, Williams JC, Allen JP (2003b) Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Biochemistry 42:13280–13286. doi: 10.1021/bi034970l PubMedCrossRefGoogle Scholar
  34. Kálmán L, Narváez AJ, LoBrutto R, Williams JC, Allen JP (2004) Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Biochemistry 43:12905–12912. doi: 10.1021/bi0362727 PubMedCrossRefGoogle Scholar
  35. Kálmán L, Thielges MC, Williams JC, Allen JP (2005) Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Biochemistry 44:13266–13273. doi: 10.1021/bi051149w PubMedCrossRefGoogle Scholar
  36. Kálmán L, Haffa ALM, Williams JC, Woodbury NW, Allen JP (2007) Reduction of the oxidized bacteriochlorophyll dimer in reaction centers by ferrocene is dependent upon the driving force. J Porphyr Phthalocyanines 11:205–211CrossRefGoogle Scholar
  37. King BA, de Winter A, McAnaney TB, Boxer SG (2001) Excited state energy transfer pathways in photosynthetic reaction centers. 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B 105:1856–1862. doi: 10.1021/jp002318j CrossRefGoogle Scholar
  38. Kirmaier C, Holten D, Bylina EJ, Youvan DC (1988) Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci USA 85:7562–7566. doi: 10.1073/pnas.85.20.7562 PubMedCrossRefGoogle Scholar
  39. Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Heidelberg, pp 261–282Google Scholar
  40. Lavergne J, Junge W (1993) Proton release during the redox cycle of the water oxidase. Photosynth Res 38:279–296. doi: 10.1007/BF00046752 CrossRefGoogle Scholar
  41. Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bönigk B et al (1993) The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers. Biochim Biophys Acta 1183:139–160. doi: 10.1016/0005-2728(93)90013-6 CrossRefGoogle Scholar
  42. Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269. doi: 10.1073/pnas.91.22.10265 PubMedCrossRefGoogle Scholar
  43. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  44. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322Google Scholar
  45. Mattioli TA, Williams JC, Allen JP, Robert B (1994) Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry 33:1636–1643. doi: 10.1021/bi00173a004 PubMedCrossRefGoogle Scholar
  46. Mattioli TA, Lin X, Allen JP, Williams JC (1995) Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34:6142–6152. doi: 10.1021/bi00018a017 PubMedCrossRefGoogle Scholar
  47. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521. doi: 10.1038/374517a0 CrossRefGoogle Scholar
  48. McDowell LM, Gaul D, Kirmaier C, Holten D, Schenck CC (1991) Investigation into the source of electron transfer asymmetry in bacterial reaction centers. Biochemistry 30:8315–8322. doi: 10.1021/bi00098a006 PubMedCrossRefGoogle Scholar
  49. McElroy JD, Feher G, Mauzerall DC (1972) Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g = 2.0026) with that of a bacteriochlorophyll radical. Biochim Biophys Acta 267:363–374. doi: 10.1016/0005-2728(72)90123-5 PubMedCrossRefGoogle Scholar
  50. Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802. doi: 10.1038/355796a0 PubMedCrossRefGoogle Scholar
  51. Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W (2002) Pigment–protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B 106:3226–3236. doi: 10.1021/jp0131119 CrossRefGoogle Scholar
  52. Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW et al (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32:3498–3505. doi: 10.1021/bi00064a038 PubMedCrossRefGoogle Scholar
  53. Nabedryk E, Allen JP, Taguchi AKW, Williams JC, Woodbury NW, Breton J (1993) Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131. Biochemistry 32:13879–13885. doi: 10.1021/bi00213a017 PubMedCrossRefGoogle Scholar
  54. Nagarajan V, Parson WW, Davis D, Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32:12324–12336. doi: 10.1021/bi00097a008 PubMedCrossRefGoogle Scholar
  55. Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112. doi: 10.1073/pnas.84.1.109 PubMedCrossRefGoogle Scholar
  56. Narváez AJ, Kálmán L, LoBrutto R, Allen JP, Williams JC (2002) Influence of the protein environment on the properties of a tyrosyl radical in reaction centers from Rhodobacter sphaeroides. Biochemistry 41:15253–15258. doi: 10.1021/bi0264566 PubMedCrossRefGoogle Scholar
  57. Narváez AJ, LoBrutto R, Allen JP, Williams JC (2004) Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Biochemistry 43:14379–14384. doi: 10.1021/bi048691p PubMedCrossRefGoogle Scholar
  58. Olson JM, Pierson BK (1987) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430. doi: 10.1007/BF02386479 CrossRefGoogle Scholar
  59. Ono T (2001) Metallo-radical hypothesis for photoassembly of (Mn)4-cluster of photosynthetic oxygen evolving complex. Biochim Biophys Acta 1503:40–51. doi: 10.1016/S0005-2728(00)00226-7 PubMedCrossRefGoogle Scholar
  60. Ort DR, Yokum CF (eds) (1996) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, DordrechtGoogle Scholar
  61. Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272. doi: 10.1016/j.ccr.2007.07.016 CrossRefGoogle Scholar
  62. Rappaport F, Lavergne J (1997) Charge recombination and proton transfer in manganese-depleted photosystem II. Biochemistry 36:15294–15302. doi: 10.1021/bi971287o PubMedCrossRefGoogle Scholar
  63. Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192. doi: 10.1016/0005-2728(94)90222-4 CrossRefGoogle Scholar
  64. Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527. doi: 10.1021/bi025725p PubMedCrossRefGoogle Scholar
  65. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohophanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104. doi: 10.1073/pnas.0704912104 PubMedCrossRefGoogle Scholar
  66. Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X et al (1995) ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry 34:8130–8143. doi: 10.1021/bi00025a020 PubMedCrossRefGoogle Scholar
  67. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620. doi: 10.1126/science.1075558 PubMedCrossRefGoogle Scholar
  68. Reimers JR, Hush NS (2004) A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis. J Am Chem Soc 126:4132–4144. doi: 10.1021/ja036883m PubMedCrossRefGoogle Scholar
  69. Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca RatonGoogle Scholar
  70. Schopf JW (ed) (1983) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, PrincetonGoogle Scholar
  71. Spiedel D, Jones MR, Robert B (2002) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: effects of amino acid polarity and position. FEBS Lett 527:171–175. doi: 10.1016/S0014-5793(02)03203-9 PubMedCrossRefGoogle Scholar
  72. Stocker JW, Taguchi AKW, Murchison HA, Woodbury NW, Boxer SG (1992) Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry 31:10356–10362. doi: 10.1021/bi00157a025 PubMedCrossRefGoogle Scholar
  73. Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762. doi: 10.1021/cr9400875 PubMedCrossRefGoogle Scholar
  74. Tang XS, Chisholm DA, Dismukes GC, Brudvig GW, Diner BA (1993) Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry 32:13742–13748. doi: 10.1021/bi00212a045 PubMedCrossRefGoogle Scholar
  75. Thielges M, Uyeda G, Cámara-Artigas A, Kálmán L, Williams JC, Allen JP (2005) Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry 44:7389–7394. doi: 10.1021/bi050377n PubMedCrossRefGoogle Scholar
  76. Tommos C, Babcock GT (1998) Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31:18–25. doi: 10.1021/ar9600188 CrossRefGoogle Scholar
  77. Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458:199–219. doi: 10.1016/S0005-2728(00)00069-4 PubMedCrossRefGoogle Scholar
  78. Tommos C, Hoganson CW, Di Valentin M, Lydakis-Simantiris N, Dorlet P, Westphal K et al (1998) Manganese and tyrosyl formation in photosynthetic oxgygen evolution. Curr Opin Chem Biol 2:244–252PubMedCrossRefGoogle Scholar
  79. Ulas G, Olack G, Brudvig GW (2008) Evidence against bicarbonate bound in the O2-evolving complex of photosystem II. Biochemistry 47:3073–3075. doi: 10.1021/bi8000424 PubMedCrossRefGoogle Scholar
  80. van Brederode ME, van Stokkum IHM, Katilius E, van Mourik F, Jones MR, van Grondelle R (1999) Primary charge separation routes in the BChl:BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry 38:7545–7555. doi: 10.1021/bi9829128 PubMedCrossRefGoogle Scholar
  81. Watanabe T, Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 287–315Google Scholar
  82. Williams JC, Allen JP (2008) Directed modification of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Heidelberg, pp 337–353CrossRefGoogle Scholar
  83. Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW, Allen JP (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31:11029–11037. doi: 10.1021/bi00160a012 PubMedCrossRefGoogle Scholar
  84. Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407. doi: 10.1021/bi011574z PubMedCrossRefGoogle Scholar
  85. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedGoogle Scholar
  86. Wraight CA (2006) Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757:886–912. doi: 10.1016/j.bbabio.2006.06.017 PubMedCrossRefGoogle Scholar
  87. Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521. doi: 10.1146/annurev.arplant.53.100301.135212 PubMedCrossRefGoogle Scholar
  88. Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi: 10.1126/science.1128186 PubMedCrossRefGoogle Scholar
  89. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743. doi: 10.1038/35055589 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • László Kálmán
    • 1
  • JoAnn C. Williams
    • 2
  • James P. Allen
    • 2
  1. 1.Department of PhysicsConcordia UniversityMontrealCanada
  2. 2.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations