Skip to main content
Log in

Comparison of bacterial reaction centers and photosystem II

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In photosynthetic organisms, the utilization of solar energy to drive electron and proton transfer reactions across membranes is performed by pigment–protein complexes including bacterial reaction centers (BRCs) and photosystem II. The well-characterized BRC has served as a structural and functional model for the evolutionarily-related photosystem II for many years. Even though these complexes transfer electrons and protons across cell membranes in analogous manners, they utilize different secondary electron donors. Photosystem II has the unique ability to abstract electrons from water, while BRCs use molecules with much lower potentials as electron donors. This article compares the two complexes and reviews the factors that give rise to the functional differences. Also discussed are the modifications that have been performed on BRCs so that they perform reactions, such as amino acid and metal oxidation, which occur in photosystem II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BChl:

Bacteriochlorophyll monomer

BPheo:

Bacteriopheophytin

BRC:

Bacterial reaction center

Chl:

Chlorophyll

EPR:

Electron paramagnetic resonance

P:

Special pair of bacteriochlorophylls, primary electron donor of BRC

PSII:

Photosystem II

P680:

Primary electron donor of PSII

pK a :

Negative logarithm of the proton dissociation constant

Rb:

Rhodobacter

YZ and YD :

Redox active tyrosine residues of PSII

References

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987a) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci USA 84:5730–5734. doi:10.1073/pnas.84.16.5730

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Feher G, Yeates TO, Komiya H, Rees DC (1987b) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits. Proc Natl Acad Sci USA 84:6162–6166. doi:10.1073/pnas.84.17.6162

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Artz K, Lin X, Williams JC, Ivancich A, Albouy D et al (1996) Effects of hydrogen bonding to a bacteriochlorophyll-bacteriopheophytin dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 35:6612–6619. doi:10.1021/bi9528311

    Article  PubMed  CAS  Google Scholar 

  • Allen JP, Cordova JM, Jolley CC, Murray TA, Schneider JW, Woodbury NW et al (2008) EPR, ENDOR and Special TRIPLE measurements of P•+ in wild type and modified reaction centers from Rb. sphaeroides. Photosynth Res. doi:10.1007/s11120-008-9346-6

    Google Scholar 

  • Artz K, Williams JC, Allen JP, Lendzian F, Rautter J, Lubitz W (1997) Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 94:13582–13587. doi:10.1073/pnas.94.25.13582

    Article  PubMed  CAS  Google Scholar 

  • Baranov SV, Tyryshkin AM, Katz D, Dismukes GC, Ananyev GM, Klimov VV (2004) Bicarbonate in a native cofactor for assembly of the manganese cluster of the photosynthetic water oxidizing complex. Kinetics of reconstitution of O2 evolution by photoactivation. Biochemistry 43:2070–2079. doi:10.1021/bi034858n

    Article  PubMed  CAS  Google Scholar 

  • Barter LMC, Durrant JR, Klug DR (2003) A quantitative structure-function relationship for the photosystem II reaction center: supermolecular behavior in natural photosynthesis. Proc Natl Acad Sci USA 100:946–951. doi:10.1073/pnas.0136891100

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biol Sci 23:94–97. doi:10.1016/S0968-0004(98)01186-4

    Article  CAS  Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF et al (2002) Questioning the evidence for earth’s oldest fossils. Nature 416:76–81. doi:10.1038/416076a

    Article  PubMed  Google Scholar 

  • Bylina EJ, Youvan DC (1988) Directed mutations affecting spectroscopic and electron transfer properties of the primary donor in the photosynthetic reaction center. Proc Natl Acad Sci USA 85:7226–7230. doi:10.1073/pnas.85.19.7226

    Article  PubMed  CAS  Google Scholar 

  • Camara-Artigas A, Magee C, Goetsch A, Allen JP (2002) The structure of the heterodimer reaction center from Rhodobacter sphaeroides at 2.55 angstrom resolution. Photosynth Res 74:87–93. doi:10.1023/A:1020882402389

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta 1503:164–186. doi:10.1016/S0005-2728(00)00221-8

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ, Feher G, Okamura MY (1985) LM complex of reaction centers from Rhodopseudomonas sphaeroides R-26: characterization and reconstitution with the H subunit. Biochemistry 24:2488–2500. doi:10.1021/bi00331a015

    Article  CAS  Google Scholar 

  • Dekker JP, van Grondelle R (2000) Primary charge separation in photosystem II. Photosynth Res 63:195–208. doi:10.1023/A:1006468024245

    Article  PubMed  CAS  Google Scholar 

  • Des Marais DJ (2001) When did photosynthesis emerge on earth? Science 289:1703–1705

    Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503:147–163. doi:10.1016/S0005-2728(00)00220-6

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Britt RD (2005) The redox-active tyrosines YZ and YD. In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water: plastoquinone oxidoreductase. Springer, Heidelberg, pp 207–233

    Google Scholar 

  • Diner BA, Tang XS, Zheng M, Dismukes GC, Force DA, Randall DW et al (1995) Environment and function of the redox active tyrosines of photosystem II. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 229–234

    Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J et al (2001) Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40:9265–9281. doi:10.1021/bi010121r

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci USA 98:2170–2175. doi:10.1073/pnas.061514798

    Article  PubMed  CAS  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of earth’s earliest sulfur cycle. Science 289:756–758. doi:10.1126/science.289.5480.756

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi:10.1126/science.1093087

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) (2006) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Heidelberg

    Google Scholar 

  • Haffa ALM, Lin S, Katilius E, Williams JC, Taguchi AKW, Allen JP et al (2002) The dependence of the initial electron-transfer rate on driving force in Rhodobacter sphaeroides reaction centers. J Phys Chem B 106:7376–7384. doi:10.1021/jp0257552

    Article  CAS  Google Scholar 

  • Hoganson CW, Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277:1953–1956. doi:10.1126/science.277.5334.1953

    Article  PubMed  CAS  Google Scholar 

  • Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) (2008) The purple phototrophic bacteria. Springer, Heidelberg

    Google Scholar 

  • Ishikita H, Saenger W, Biesiadka B, Knapp EW (2006) How photosynthetic reaction centers control oxidation power in chlorophyll pairs P680, P700, and P870. Proc Natl Acad Sci USA 103:9855–9860. doi:10.1073/pnas.0601446103

    Article  PubMed  CAS  Google Scholar 

  • Johnson ET, Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41:6483–6494. doi:10.1021/bi012131y

    Article  PubMed  CAS  Google Scholar 

  • Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W et al (2002) Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B 106:11859–11869. doi:10.1021/jp021024q

    Article  CAS  Google Scholar 

  • Kálmán L, LoBrutto R, Allen JP, Williams JC (1999) Modified reaction centres oxidize tyrosine in reactions that mirror photosystem II. Nature 402:696–699. doi:10.1038/45300

    Article  Google Scholar 

  • Kálmán L, Williams JC, Allen JP (2003a) Proton release upon oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. FEBS Lett 545:193–198. doi:10.1016/S0014-5793(03)00532-5

    Article  PubMed  CAS  Google Scholar 

  • Kálmán L, LoBrutto R, Narváez AJ, Williams JC, Allen JP (2003b) Correlation of proton release and electrochromic shifts of the optical spectrum due to oxidation of tyrosine in reaction centers from Rhodobacter sphaeroides. Biochemistry 42:13280–13286. doi:10.1021/bi034970l

    Article  PubMed  CAS  Google Scholar 

  • Kálmán L, Narváez AJ, LoBrutto R, Williams JC, Allen JP (2004) Dependence of tyrosine oxidation in highly oxidizing bacterial reaction centers on pH and free-energy difference. Biochemistry 43:12905–12912. doi:10.1021/bi0362727

    Article  PubMed  CAS  Google Scholar 

  • Kálmán L, Thielges MC, Williams JC, Allen JP (2005) Proton release due to manganese binding and oxidation in modified bacterial reaction centers. Biochemistry 44:13266–13273. doi:10.1021/bi051149w

    Article  PubMed  CAS  Google Scholar 

  • Kálmán L, Haffa ALM, Williams JC, Woodbury NW, Allen JP (2007) Reduction of the oxidized bacteriochlorophyll dimer in reaction centers by ferrocene is dependent upon the driving force. J Porphyr Phthalocyanines 11:205–211

    Article  Google Scholar 

  • King BA, de Winter A, McAnaney TB, Boxer SG (2001) Excited state energy transfer pathways in photosynthetic reaction centers. 4. Asymmetric energy transfer in the heterodimer mutant. J Phys Chem B 105:1856–1862. doi:10.1021/jp002318j

    Article  CAS  Google Scholar 

  • Kirmaier C, Holten D, Bylina EJ, Youvan DC (1988) Electron transfer in a genetically modified bacterial reaction center containing a heterodimer. Proc Natl Acad Sci USA 85:7562–7566. doi:10.1073/pnas.85.20.7562

    Article  PubMed  CAS  Google Scholar 

  • Larkum AWD (2006) The evolution of chlorophylls and photosynthesis. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Heidelberg, pp 261–282

    Google Scholar 

  • Lavergne J, Junge W (1993) Proton release during the redox cycle of the water oxidase. Photosynth Res 38:279–296. doi:10.1007/BF00046752

    Article  CAS  Google Scholar 

  • Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bönigk B et al (1993) The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers. Biochim Biophys Acta 1183:139–160. doi:10.1016/0005-2728(93)90013-6

    Article  CAS  Google Scholar 

  • Lin X, Murchison HA, Nagarajan V, Parson WW, Allen JP, Williams JC (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91:10265–10269. doi:10.1073/pnas.91.22.10265

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  • Mattioli TA, Williams JC, Allen JP, Robert B (1994) Changes in primary donor hydrogen-bonding interactions in mutant reaction centers from Rhodobacter sphaeroides: identification of the vibrational frequencies of all the conjugated carbonyl groups. Biochemistry 33:1636–1643. doi:10.1021/bi00173a004

    Article  PubMed  CAS  Google Scholar 

  • Mattioli TA, Lin X, Allen JP, Williams JC (1995) Correlation between multiple hydrogen bonding and alteration of the oxidation potential of the bacteriochlorophyll dimer of reaction centers from Rhodobacter sphaeroides. Biochemistry 34:6142–6152. doi:10.1021/bi00018a017

    Article  PubMed  CAS  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ et al (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521. doi:10.1038/374517a0

    Article  CAS  Google Scholar 

  • McDowell LM, Gaul D, Kirmaier C, Holten D, Schenck CC (1991) Investigation into the source of electron transfer asymmetry in bacterial reaction centers. Biochemistry 30:8315–8322. doi:10.1021/bi00098a006

    Article  PubMed  CAS  Google Scholar 

  • McElroy JD, Feher G, Mauzerall DC (1972) Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g = 2.0026) with that of a bacteriochlorophyll radical. Biochim Biophys Acta 267:363–374. doi:10.1016/0005-2728(72)90123-5

    Article  PubMed  CAS  Google Scholar 

  • Moser CC, Keske JM, Warncke K, Farid RS, Dutton PL (1992) Nature of biological electron transfer. Nature 355:796–802. doi:10.1038/355796a0

    Article  PubMed  CAS  Google Scholar 

  • Müh F, Lendzian F, Roy M, Williams JC, Allen JP, Lubitz W (2002) Pigment–protein interactions in bacterial reaction centers and their influence on oxidation potential and spin density distribution of the primary donor. J Phys Chem B 106:3226–3236. doi:10.1021/jp0131119

    Article  CAS  Google Scholar 

  • Murchison HA, Alden RG, Allen JP, Peloquin JM, Taguchi AKW, Woodbury NW et al (1993) Mutations designed to modify the environment of the primary electron donor of the reaction center from Rhodobacter sphaeroides: phenylalanine to leucine at L167 and histidine to phenylalanine at L168. Biochemistry 32:3498–3505. doi:10.1021/bi00064a038

    Article  PubMed  CAS  Google Scholar 

  • Nabedryk E, Allen JP, Taguchi AKW, Williams JC, Woodbury NW, Breton J (1993) Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131. Biochemistry 32:13879–13885. doi:10.1021/bi00213a017

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan V, Parson WW, Davis D, Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32:12324–12336. doi:10.1021/bi00097a008

    Article  PubMed  CAS  Google Scholar 

  • Nanba O, Satoh K (1987) Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci USA 84:109–112. doi:10.1073/pnas.84.1.109

    Article  PubMed  CAS  Google Scholar 

  • Narváez AJ, Kálmán L, LoBrutto R, Allen JP, Williams JC (2002) Influence of the protein environment on the properties of a tyrosyl radical in reaction centers from Rhodobacter sphaeroides. Biochemistry 41:15253–15258. doi:10.1021/bi0264566

    Article  PubMed  CAS  Google Scholar 

  • Narváez AJ, LoBrutto R, Allen JP, Williams JC (2004) Trapped tyrosyl radical populations in modified reaction centers from Rhodobacter sphaeroides. Biochemistry 43:14379–14384. doi:10.1021/bi048691p

    Article  PubMed  CAS  Google Scholar 

  • Olson JM, Pierson BK (1987) Origin and evolution of photosynthetic reaction centers. Orig Life 17:419–430. doi:10.1007/BF02386479

    Article  CAS  Google Scholar 

  • Ono T (2001) Metallo-radical hypothesis for photoassembly of (Mn)4-cluster of photosynthetic oxygen evolving complex. Biochim Biophys Acta 1503:40–51. doi:10.1016/S0005-2728(00)00226-7

    Article  PubMed  CAS  Google Scholar 

  • Ort DR, Yokum CF (eds) (1996) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rappaport F, Diner BA (2008) Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in photosystem II. Coord Chem Rev 252:259–272. doi:10.1016/j.ccr.2007.07.016

    Article  CAS  Google Scholar 

  • Rappaport F, Lavergne J (1997) Charge recombination and proton transfer in manganese-depleted photosystem II. Biochemistry 36:15294–15302. doi:10.1021/bi971287o

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of electron transfer and electrochromic change during the redox transitions of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192. doi:10.1016/0005-2728(94)90222-4

    Article  CAS  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41:8518–8527. doi:10.1021/bi025725p

    Article  PubMed  CAS  Google Scholar 

  • Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohophanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci USA 104:15099–15104. doi:10.1073/pnas.0704912104

    Article  PubMed  CAS  Google Scholar 

  • Rautter J, Lendzian F, Schulz C, Fetsch A, Kuhn M, Lin X et al (1995) ENDOR studies of the primary donor cation radical in mutant reaction centers of Rhodobacter sphaeroides with altered hydrogen-bond interactions. Biochemistry 34:8130–8143. doi:10.1021/bi00025a020

    Article  PubMed  CAS  Google Scholar 

  • Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620. doi:10.1126/science.1075558

    Article  PubMed  CAS  Google Scholar 

  • Reimers JR, Hush NS (2004) A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis. J Am Chem Soc 126:4132–4144. doi:10.1021/ja036883m

    Article  PubMed  CAS  Google Scholar 

  • Scheer H (ed) (1991) Chlorophylls. CRC Press, Boca Raton

    Google Scholar 

  • Schopf JW (ed) (1983) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton

    Google Scholar 

  • Spiedel D, Jones MR, Robert B (2002) Tuning of the redox potential of the primary electron donor in reaction centres of purple bacteria: effects of amino acid polarity and position. FEBS Lett 527:171–175. doi:10.1016/S0014-5793(02)03203-9

    Article  PubMed  CAS  Google Scholar 

  • Stocker JW, Taguchi AKW, Murchison HA, Woodbury NW, Boxer SG (1992) Spectroscopic and redox properties of sym1 and (M)F195H: Rhodobacter capsulatus reaction center symmetry mutants which affect the initial electron donor. Biochemistry 31:10356–10362. doi:10.1021/bi00157a025

    Article  PubMed  CAS  Google Scholar 

  • Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762. doi:10.1021/cr9400875

    Article  PubMed  CAS  Google Scholar 

  • Tang XS, Chisholm DA, Dismukes GC, Brudvig GW, Diner BA (1993) Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry 32:13742–13748. doi:10.1021/bi00212a045

    Article  PubMed  CAS  Google Scholar 

  • Thielges M, Uyeda G, Cámara-Artigas A, Kálmán L, Williams JC, Allen JP (2005) Design of a redox-linked active metal site: manganese bound to bacterial reaction centers at a site resembling that of photosystem II. Biochemistry 44:7389–7394. doi:10.1021/bi050377n

    Article  PubMed  CAS  Google Scholar 

  • Tommos C, Babcock GT (1998) Oxygen production in nature: a light-driven metalloradical enzyme process. Acc Chem Res 31:18–25. doi:10.1021/ar9600188

    Article  CAS  Google Scholar 

  • Tommos C, Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458:199–219. doi:10.1016/S0005-2728(00)00069-4

    Article  PubMed  CAS  Google Scholar 

  • Tommos C, Hoganson CW, Di Valentin M, Lydakis-Simantiris N, Dorlet P, Westphal K et al (1998) Manganese and tyrosyl formation in photosynthetic oxgygen evolution. Curr Opin Chem Biol 2:244–252

    Article  PubMed  CAS  Google Scholar 

  • Ulas G, Olack G, Brudvig GW (2008) Evidence against bicarbonate bound in the O2-evolving complex of photosystem II. Biochemistry 47:3073–3075. doi:10.1021/bi8000424

    Article  PubMed  CAS  Google Scholar 

  • van Brederode ME, van Stokkum IHM, Katilius E, van Mourik F, Jones MR, van Grondelle R (1999) Primary charge separation routes in the BChl:BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry 38:7545–7555. doi:10.1021/bi9829128

    Article  PubMed  Google Scholar 

  • Watanabe T, Kobayashi M (1991) Electrochemistry of chlorophylls. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, FL, pp 287–315

    Google Scholar 

  • Williams JC, Allen JP (2008) Directed modification of reaction centers from purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Heidelberg, pp 337–353

    Chapter  Google Scholar 

  • Williams JC, Alden RG, Murchison HA, Peloquin JM, Woodbury NW, Allen JP (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides. Biochemistry 31:11029–11037. doi:10.1021/bi00160a012

    Article  PubMed  CAS  Google Scholar 

  • Williams JC, Haffa ALM, McCulley JL, Woodbury NW, Allen JP (2001) Electrostatic interactions between charged amino acid residues and the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Biochemistry 40:15403–15407. doi:10.1021/bi011574z

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  • Wraight CA (2006) Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim Biophys Acta 1757:886–912. doi:10.1016/j.bbabio.2006.06.017

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521. doi:10.1146/annurev.arplant.53.100301.135212

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi:10.1126/science.1128186

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W et al (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743. doi:10.1038/35055589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Our work is supported by the National Science Foundation, grant MCB0640002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kálmán, L., Williams, J.C. & Allen, J.P. Comparison of bacterial reaction centers and photosystem II. Photosynth Res 98, 643–655 (2008). https://doi.org/10.1007/s11120-008-9369-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9369-z

Keywords

Navigation