Advertisement

Photosynthesis Research

, Volume 98, Issue 1–3, pp 523–527 | Cite as

Analysis of xenon binding to photosystem II by X-ray crystallography

  • J. W. Murray
  • K. Maghlaoui
  • J. Kargul
  • M. Sugiura
  • J. Barber
Regular paper

Abstract

In order to investigate oxygen binding and hydrophobic cavities in photosystem II (PSII), we have introduced xenon under pressure into crystals of PSII isolated from Thermosynechococcus elongatus and used X-ray anomalous diffraction analyses to identify the xenon sites in the complex. Under the conditions employed, 25 Xe-binding sites were identified in each monomer of the dimeric PSII complex. The majority of these were distributed within the membrane spanning portion of the complex with no obvious correlation with the previously proposed oxygen channels. One binding site was located close to the haem of cytochrome b559 in a position analogous to a Xe-binding site of myoglobin. The only Xe-binding site not associated with the intrinsic subunits of PSII was within the hydrophobic core of the PsbO protein.

Keywords

Photosystem II Xenon-binding X-ray crystallography Oxygen channel Cytochrome b559 PsbO protein 

Abbreviations

CP43

Chlorophyll-binding PsbC protein

D1

Reaction centre PsbA protein

PSII

Photosystem II

Notes

Acknowledgments

We thank Elspeth Garman for the generous loan of a xenon cylinder and the pressurisation cell. We acknowledge financial support for this work from the Biotechnology and Biological Science Research Council (BBSRC) and from The Royal Society UK–Japan exchange programme. Preliminary data were collected at the Diamond synchrotron. We wish to acknowledge our access to the facilities and staff of the Swiss Light Source, particularly Clemens Schulze-Briese.

Supplementary material

References

  1. Anderson JM (2001) Does functional photosystem II complex have an oxygen channel? FEBS Lett 488:1–4. doi: 10.1016/S0014-5793(00)02358-9 PubMedCrossRefGoogle Scholar
  2. Barber J, Rutherford AW (2007) Revealing how nature uses sunlight to split water. Philos Trans R Soc Lond B Biol Sci 363:1123–1303Google Scholar
  3. Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430:480–483. doi: 10.1038/nature02676 PubMedCrossRefGoogle Scholar
  4. Clausen J, Junge W, Dau H, Haumann M (2005) Photosynthetic water oxidation at high O2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44:12775–12779. doi: 10.1021/bi051183a PubMedCrossRefGoogle Scholar
  5. De Las Rivas J, Barber J (2004) Analyses of the structure of the PsbO protein and its implications. Photosynth Res 81:329–343. doi: 10.1023/B:PRES.0000036889.44048.e4 PubMedCrossRefGoogle Scholar
  6. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CA, USA. http://www.pymol.org
  7. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–275. doi: 10.1038/nsb0497-269 PubMedCrossRefGoogle Scholar
  8. Doukov TI, Blasiak LC, Seravalli J, Ragsdale SW, Drennan CL (2008) Xenon in and at the end of the tunnel of bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Biochemistry 47:3474–3483. doi: 10.1021/bi702386t PubMedCrossRefGoogle Scholar
  9. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi: 10.1107/S0907444904019158 PubMedCrossRefGoogle Scholar
  10. Haumann M, Grundmeier A, Zaharieva I, Dau H (2008) Photosynthetic water oxidation an evoluted dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci USA (in press)Google Scholar
  11. Ho FM, Styring S (2007) Access channels and methanol binding site to CaMn(4) cluster in photosystem II based on solvent accessibility simulations, with implications for substrate water access. Biochim Biophys Acta 1777:140–153PubMedGoogle Scholar
  12. Kabsch WJ (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800. doi: 10.1107/S0021889893005588 CrossRefGoogle Scholar
  13. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  14. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2005) Phaser crystallographic software. J Appl Crystallogr 40:658–674. doi: 10.1107/S0021889807021206 CrossRefGoogle Scholar
  15. Murray JW, Barber J (2007) Structural characteristics of channels and pathways in photosystem II including the identification of an oxygen channel. J Struct Biol 159:228–237. doi: 10.1016/j.jsb.2007.01.016 PubMedCrossRefGoogle Scholar
  16. Murray JW, Maghlaoui K, Kargul J, Ishida N, Lai T-LA, Rutherford AW et al (2008) X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of photosystem II. Energy Environ Sci 1:161–166. doi: 10.1039/b810067p CrossRefGoogle Scholar
  17. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255. doi: 10.1107/S0907444996012255 PubMedCrossRefGoogle Scholar
  18. Nienhaus K, Knapp JE, Palladino P, Royer WE, Nienhaus GU (2007) Ligand migration and binding in the dimeric hemoglobin of Scapharca inaequivalvis. Biochemistry 46(49):14018–14031. doi: 10.1021/bi7016798 PubMedCrossRefGoogle Scholar
  19. Petřek M, Otyepka M, Banáš P, Košinová P, Koča J, Damborský J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7:316–324. doi: 10.1186/1471-2105-7-316 PubMedCrossRefGoogle Scholar
  20. Petřek M, Košinová P, Koča J, Otyepka M (2007) MOLE: a Voronoi diagram-based explorer of molecular channels, pores, and tunnels. Structure 15:1357–1363. doi: 10.1016/j.str.2007.10.007 PubMedCrossRefGoogle Scholar
  21. Riistama S, Puustinen A, Garca-Horsman A, Iwata S, Michel H, Wikstrom M (1996) Channelling of dioxygen into the respiratory enzyme. Biochim Biophys Acta 1275:1–4. doi: 10.1016/0005-2728(96)00040-0 PubMedCrossRefGoogle Scholar
  22. Schiltz M, Fourme R, Prangé T (2003) Use of noble gases xenon and krypton as heavy atoms in protein structure determination. Methods Enzymol 374:83–199. doi: 10.1016/S0076-6879(03)74004-X PubMedCrossRefGoogle Scholar
  23. Schoenborn BP, Watson HC, Kendrew JC (1965) Binding of xenon to sperm whale myoglobin. Nature 207:28–30. doi: 10.1038/207028a0 PubMedCrossRefGoogle Scholar
  24. Svensson-Ek M, Abramson J, Larsson G, Trnroth S, Brzezinski P, Iwata S (2002) The X-ray crystal structure of wild-type and EQ (I-286) mutant cytochrome c oxidase from Rhodobacter sphaeroides. J Mol Biol 321:329–339. doi: 10.1016/S0022-2836(02)00619-8 PubMedCrossRefGoogle Scholar
  25. Wydrzynski TJ, Satoh K (2005) Photosystem II: the light-driven water: plastoquinone oxidoreductase. In: Wydrzynski TJ, Satoh K (eds) Advances in photosynthesis and respiration, vol 22. Springer, Dordrecht, The Netherlands, pp 1–76Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. W. Murray
    • 1
  • K. Maghlaoui
    • 1
  • J. Kargul
    • 1
  • M. Sugiura
    • 2
  • J. Barber
    • 1
  1. 1.Division of Molecular BiosciencesImperial College LondonLondonUK
  2. 2.Cell-Free Science and Technology Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations