Photosynthesis Research

, Volume 98, Issue 1–3, pp 427–437 | Cite as

Structure, function, and evolution of the PsbP protein family in higher plants

  • Kentaro Ifuku
  • Seiko Ishihara
  • Ren Shimamoto
  • Kunio Ido
  • Fumihiko Sato


The PsbP is a thylakoid lumenal subunit of photosystem II (PSII), which has developed specifically in higher plants and green algae. In higher plants, the molecular function of PsbP has been intensively investigated by release–reconstitution experiments in vitro. Recently, solution of a high-resolution structure of PsbP has enabled investigation of structure–function relationships, and efficient gene-silencing techniques have demonstrated the crucial role of PsbP in PSII activity in vivo. Furthermore, genomic and proteomic studies have shown that PsbP belongs to the divergent PsbP protein family, which consists of about 10 members in model plants such as Arabidopsis and rice. Characterization of the molecular function of PsbP homologs using Arabidopsis mutants suggests that each plays a distinct and important function in maintaining photosynthetic electron transfer. In this review, recent findings regarding the molecular functions of PsbP and other PsbP homologs in higher plants are summarized, and the molecular evolution of these proteins is discussed.


Molecular evolution Oxygen-evolving complex Photosystem II PsbP protein PsbP-like protein PsbP-domain protein 



Light harvesting complex of photosystem II


Oxygen-evolving complex


PsbP-domain protein


PsbP-like protein


Photosystem II


Photosystem I



This work was supported by a Grant-in-Aid from The Ministry of Education, Culture, Sports, Science, and Technology, Japan for Scientific Research on Priority Areas (grant no. 17051016 to Kentaro Ifuku and Fumihiko Sato) and for Young Scientists (B) (grant no. 18770032 to Kentaro Ifuku).


  1. Akabori K, Imaoka A, Toyoshima Y (1984) The role of lipids and 17-kDa protein in enhancing the recovery of O2 evolution in cholate-treated thylakoid membranes. FEBS Lett 173:36–40. doi: 10.1016/0014-5793(84)81012-1 CrossRefGoogle Scholar
  2. Åkerlund HE, Jansson C, Andersson B (1982) Reconstitution of photosynthetic water splitting in inside-out thylakoid vesicles and identification of a participating polypeptide. Biochim Biophys Acta 681:1–10. doi: 10.1016/0005-2728(82)90271-7 CrossRefGoogle Scholar
  3. Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356. doi: 10.1093/jxb/eri041 PubMedCrossRefGoogle Scholar
  4. Baena-González E, Aro EM (2002) Biogenesis, assembly, and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci 357:1451–1459. doi: 10.1098/rstb.2002.1141 PubMedCrossRefGoogle Scholar
  5. Balsera M, Arellano JB, Revuelta JL, de Las Rivas J, Hermoso JA (2005) The 1.49 Å resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350:1051–1060PubMedCrossRefGoogle Scholar
  6. Boekema EJ, van Breemen JF, van Roon H, Dekker JP (2000) Conformational changes in photosystem II supercomplexes upon removal of extrinsic subunits. Biochemistry 39:12907–12915. doi: 10.1021/bi0009183 PubMedCrossRefGoogle Scholar
  7. Bondarava N, Beyer P, Krieger-Liszkay A (2005) Function of the 23 kDa extrinsic protein of photosystem II as a manganese binding protein and its role in photoactivation. Biochim Biophys Acta 1708:63–70. doi: 10.1016/j.bbabio.2005.01.005 PubMedCrossRefGoogle Scholar
  8. Bondarava N, Un S, Krieger-Liszkay A (2007) Manganese binding to the 23 kDa extrinsic protein of photosystem II. Biochim Biophys Acta 1767:583–588. doi: 10.1016/j.bbabio.2007.01.001 PubMedCrossRefGoogle Scholar
  9. Bricker TM, Frankel LK (2003) Carboxylate groups on the manganese-stabilizing protein are required for efficient binding of the 24 kDa extrinsic protein to photosystem II. Biochemistry 42:2056–2061PubMedCrossRefGoogle Scholar
  10. Bricker TM, Burnap RL (2005) The extrinsic proteins of photosystem II. In: Wydzynsky T, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 95–120Google Scholar
  11. Calderone V, Trabucco M, Vujicić A, Battistutta R, Giacometti GM, Andreucci F et al (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4:900–905. doi: 10.1038/sj.embor.embor923 PubMedCrossRefGoogle Scholar
  12. Chassin Y, Kapri-Pardes E, Sinvany G, Arad T, Adam Z (2002) Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis. Plant Physiol 130:857–864. doi: 10.1104/pp.007922 PubMedCrossRefGoogle Scholar
  13. Chen H, Zhang D, Guo J, Wu H, Jin M, Lu Q et al (2006) A Psb27 homologue in Arabidopsis thaliana is required for efficient repair of photodamaged photosystem II. Plant Mol Biol 61:567–575. doi: 10.1007/s11103-006-0031-x PubMedCrossRefGoogle Scholar
  14. Creighton AM, Hulford A, Mant A, Robinson D, Robinson C (1995) A monomeric, tightly folded stromal intermediate on the ∆pH-dependent thylakoid protein transport pathway. J Biol Chem 270:1663–1669. doi: 10.1074/jbc.270.4.1663 PubMedCrossRefGoogle Scholar
  15. De Las Rivas J, Roman A (2005) Structure and evolution of the extrinsic proteins that stabilize the oxygen-evolving engine. Photochem Photobiol Sci 4:1003–1010. doi: 10.1039/b506874f PubMedCrossRefGoogle Scholar
  16. De Las Rivas J, Balsera M, Barber J (2004) Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9:18–25. doi: 10.1016/j.tplants.2003.11.007 PubMedCrossRefGoogle Scholar
  17. de Vitry C, Olive J, Drapier D, Recouvreur M, Wollman FA (1989) Post-translational events leading to the assembly of photosystem II protein complex: a study using photosynthesis mutants from Chlamydomonas reinhardtii. J Cell Biol 109:991–1006. doi: 10.1083/jcb.109.3.991 PubMedCrossRefGoogle Scholar
  18. Eisenberg-Domovich Y, Oelmüller R, Herrmann RG, Ohad I (1995) Role of the RCII-D1 protein in the reversible association of the oxygen-evolving complex proteins with the lumenal side of photosystem II. J Biol Chem 270:30181–30186. doi: 10.1074/jbc.270.38.22535 PubMedCrossRefGoogle Scholar
  19. Enami I, Mochizuki Y, Takahashi S, Kakuno T, Horio T, Satoh K et al (1990) Evidence from crosslinking for the three extrinsic proteins of spinach photosystem II complex that are associated with oxygen evolution. Plant Cell Physiol 31:725–729Google Scholar
  20. Enami I, Suzuki T, Tada O, Nakada Y, Nakamura K, Tohri A et al (2005) Distribution of the extrinsic proteins as a potential marker for the evolution of photosynthetic oxygen-evolving photosystem II. FEBS J 272:5020–5030. doi: 10.1111/j.1742-4658.2005.04912.x PubMedCrossRefGoogle Scholar
  21. Endo T, Shikanai T, Takabayashi A, Asada K, Sato F (1999) The role of chloroplastic NAD(P)H dehydrogenase in photoprotection. FEBS Lett 457:5–8. doi: 10.1016/S0014-5793(99)00989-8 PubMedCrossRefGoogle Scholar
  22. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  23. Ghanotakis DF, Yocum CF (1984) Structural organization of the oxidizing side of photosystem II. Exogenous reductants reduce and destroy the Mn-complex in photosystem II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 767:524–531. doi: 10.1016/0005-2728(84)90051-3 CrossRefGoogle Scholar
  24. Ghanotakis DF, Topper JN, Babcock GT, Yocum CF (1984) Water-soluble 17 and 23 kDa polypeptide restore oxygen evolution by creating a high-affinity site for Ca2+ on the oxidizing side of photosystem II. FEBS Lett 170:169–173. doi: 10.1016/0014-5793(84)81393-9 CrossRefGoogle Scholar
  25. Hashimoto A, Yamamoto Y, Theg SM (1996) Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Lett 391:29–34. doi: 10.1016/0014-5793(96)00686-2 PubMedCrossRefGoogle Scholar
  26. Hashimoto A, Ettinger WF, Yamamoto Y, Theg SM (1997) Assembly of newly imported oxygen-evolving complex subunits in isolated chloroplasts: sites of assembly and mechanism of binding. Plant Cell 9:441–452PubMedCrossRefGoogle Scholar
  27. Ido K, Ifuku K, Ishihara S, Yamamoto Y, Miyake C, Sato F (2008) Effects of the PsbP knockdown on the photosynthetic electron transfer in Nicotoana tabacum. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Energy from the sun: 14th international congress on photosynthesis. Springer, Heidelberg, pp 609–612Google Scholar
  28. Ifuku K, Sato F (2001) Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in photosystem II in ion-retention in oxygen-evolution. Biochim Biophys Acta 1546:196–204PubMedGoogle Scholar
  29. Ifuku K, Sato F (2002) A truncated mutant of the extrinsic 23-kDa protein that absolutely requires the extrinsic 17-kDa protein for Ca2+ retention in photosystem II. Plant Cell Physiol 43:1244–1249. doi: 10.1093/pcp/pcf136 PubMedCrossRefGoogle Scholar
  30. Ifuku K, Nakatsu T, Kato H, Sato F (2003) Crystallization and preliminary crystallographic studies on the extrinsic 23 kDa protein in the oxygen-evolving complex of photosystem II. Acta Crystallogr D 59:1462–1463. doi: 10.1107/S0907444903011004 PubMedCrossRefGoogle Scholar
  31. Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5:362–367. doi: 10.1038/sj.embor.7400113 PubMedCrossRefGoogle Scholar
  32. Ifuku K, Nakatsu T, Shimamoto R, Yamamoto Y, Ishihara S, Kato H et al (2005a) Structure and function of the PsbP protein of photosystem II from higher plants. Photosynth Res 84:251–255. doi: 10.1007/s11120-004-7160-3 PubMedCrossRefGoogle Scholar
  33. Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005b) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139:1175–1184. doi: 10.1104/pp.105.068643 PubMedCrossRefGoogle Scholar
  34. Ishihara S, Takabayashi A, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679. doi: 10.1104/pp.107.105866 PubMedCrossRefGoogle Scholar
  35. Ishihara S, Takabayashi A, Endo T, Ifuku K, Sato F (2008) Functional analysis of two PsbP-Like (PPL) proteins in Arabidopsis thaliana. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Energy from the sun: 14th international congress on photosynthesis. Springer, Heidelberg, pp 1091–1094Google Scholar
  36. Ishihara S, Yamamoto Y, Ifuku K, Sato F (2005) Functional analysis of four members of the PsbP family in photosystem II in Nicotiana tabacum using differential RNA interference. Plant Cell Physiol 44:1885–1893. doi: 10.1093/pcp/pci207 CrossRefGoogle Scholar
  37. Ishikawa Y, Schröder WP, Funk C (2005) Functional analysis of the PsbP-like protein (sll1418) in Synechocystis sp. PCC 6803. Photosynth Res 84:257–262. doi: 10.1007/s11120-005-0477-8 PubMedCrossRefGoogle Scholar
  38. Kamiya Y, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103. doi: 10.1073/pnas.0135651100 PubMedCrossRefGoogle Scholar
  39. Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K et al (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012. doi: 10.1021/bi026012+ PubMedCrossRefGoogle Scholar
  40. Kuwabara T, Suzuki K (1994) A prolyl endoproteinase that acts specifically on the extrinsic 18-kDa protein of photosystem II: purification and further characterization. Plant Cell Physiol 35:665–675PubMedGoogle Scholar
  41. Kuwabara T, Suzuki K (1995) Reversible changes in conformation of the 23-kDa protein of photosystem II and their relationship to the susceptibility of the protein to a proteinase from photosystem II membranes. Plant Cell Physiol 36:495–504PubMedGoogle Scholar
  42. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  43. Mayfield SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear encoding oxygen-evolving enhancer 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinharditii. Proc Natl Acad Sci USA 84:749–753. doi: 10.1073/pnas.84.3.749 PubMedCrossRefGoogle Scholar
  44. Meades GD Jr, McLachlan A, Sallans L, Limbach PA, Frankel LK, Bricker T (2005) Association of the 17-kDa extrinsic protein with photosystem II in higher plants. Biochemistry 44:15216–15221. doi: 10.1021/bi051704u PubMedCrossRefGoogle Scholar
  45. Miyao M, Murata N (1983) Partial disintegration and reconstitution of the photosynthetic oxygen evolution system: binding of 24 kilodalton and 18 kilodalton polypeptides. Biochim Biophys Acta 725:87–93. doi: 10.1016/0005-2728(83)90227-X CrossRefGoogle Scholar
  46. Miyao M, Murata N (1985) The Cl effect on photosynthetic oxygen evolution: interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett 180:330–308CrossRefGoogle Scholar
  47. Miyao M, Murata N (1989) The mode of binding of three extrinsic proteins of 33 kDa, 23 kDa, and 18 kDa in photosystem II complex of spinach. Biochim Biophys Acta 977:315–321. doi: 10.1016/S0005-2728(89)80086-6 CrossRefGoogle Scholar
  48. Miyao M, Fujimura Y, Murata N (1988) Partial degradation of the 23-kDa protein of the photosystem II complex of spinach. Biochim Biophys Acta 936:465–474. doi: 10.1016/0005-2728(88)90024-2 CrossRefGoogle Scholar
  49. Montané MH, Kloppstech K (2000) The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function? Gene 258:1–8. doi: 10.1016/S0378-1119(00)00413-3 PubMedCrossRefGoogle Scholar
  50. Munshi MK, Kobayashi Y, Shikanai T (2006) Chlororespiratory reduction 6 is a novel factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 141:737–744. doi: 10.1104/pp.106.080267 PubMedCrossRefGoogle Scholar
  51. Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F (2002) Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS Lett 523:138–142. doi: 10.1016/S0014-5793(02)02963-0 PubMedCrossRefGoogle Scholar
  52. Murakami R, Ifuku K, Takabayashi A, Shikanai T, Endo T, Sato F (2005) Functional dissection of two Arabidopsis PsbO proteins PsbO1 and PsbO2. FEBS J 272:2165–2175. doi: 10.1111/j.1742-4658.2005.04636.x PubMedCrossRefGoogle Scholar
  53. Murata N, Miyao M (1985) Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 10:122–124. doi: 10.1016/0968-0004(85)90272-5 CrossRefGoogle Scholar
  54. Muraoka R, Okuda K, Kobayashi Y, Shikanai T (2006) A eukaryotic factor required for accumulation of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Physiol 142:1683–1689. doi: 10.1104/pp.106.088682 PubMedCrossRefGoogle Scholar
  55. Nield J, Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361. doi: 10.1016/j.bbabio.2006.03.019 PubMedCrossRefGoogle Scholar
  56. Nowaczyk MM, Hebeler R, Schlodder E, Meyer HE, Warscheid B, Rögner M (2006) Psb27, a cyanobacterial lipoprotein, is involved in the repair cycle of photosystem II. Plant Cell 18:3121–3131. doi: 10.1105/tpc.106.042671 PubMedCrossRefGoogle Scholar
  57. Oki M, Nishimoto T (1998) A protein required for nuclear-protein import, Mog1p, directly interacts with GTP-Gsp1p, the Saccharomyces cerevisiae ran homologue. Proc Natl Acad Sci USA 95:15388–15393. doi: 10.1073/pnas.95.26.15388 PubMedCrossRefGoogle Scholar
  58. Oki M, Nishimoto T (2000) Yrb1p interaction with the gsp1p C terminus blocks Mog1p stimulation of GTP release from Gsp1p. J Biol Chem 275:32894–32900PubMedCrossRefGoogle Scholar
  59. Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Frisco G, Rudella A, Liberles DA, Söderberg L, Roepstorff P, von Heijne G, van Wiji KJ (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction. Plant Cell 14:211–236 PubMedCrossRefGoogle Scholar
  60. Roffey RA, Theg SM (1996) Analysis of the import of carboxyl-terminal truncations of the 23-kilodalton subunit of the oxygen-evolving complex suggests that its structure is an important determinant for thylakoid transport. Plant Physiol 111:1329–1338PubMedGoogle Scholar
  61. Roose JL, Pakrasi HB (2008) The Psb27 protein facilitates manganese cluster assembly in photosystem II. J Biol Chem 283:4044–4050. doi: 10.1074/jbc.M708960200 PubMedCrossRefGoogle Scholar
  62. Roose JL, Kashino Y, Pakrasi HB (2007a) The PsbQ protein defines cyanobacterial photosystem II complexes with highest activity and stability. Proc Natl Acad Sci USA 104:2548–2553. doi: 10.1073/pnas.0609337104 PubMedCrossRefGoogle Scholar
  63. Roose JL, Wegener KM, Pakrasi HB (2007b) The extrinsic proteins of photosystem II. Photosynth Res 92:369–387. doi: 10.1007/s11120-006-9117-1 PubMedCrossRefGoogle Scholar
  64. Rova M, Franzén LG, Fredriksson PO, Styring S (1994) Photosystem II in a mutant of Chlamydomonas reinharditii lacking the 23 kDa psbP protein shows increased sensitivity to photoinhibition in the absence of chloride. Photosynth Res 39:75–83. doi: 10.1007/BF00027145 CrossRefGoogle Scholar
  65. Rova EM, Mc Ewen B, Fredriksson PO, Styring S (1996) Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-Kda extrinsic subunit of photosystem II. J Biol Chem 271:28918–28924PubMedCrossRefGoogle Scholar
  66. Rova M, Mamedov F, Magnuson A, Fredriksson PO, Styring S (1998) Coupled activation of the donor and the acceptor side of photosystem II during photoactivation of the oxygen evolving cluster. Biochemistry 37:11039–11045. doi: 10.1021/bi980381h PubMedCrossRefGoogle Scholar
  67. Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17:219–232. doi: 10.1105/tpc.104.028282 PubMedCrossRefGoogle Scholar
  68. Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365. doi: 10.1074/jbc.M108575200 PubMedCrossRefGoogle Scholar
  69. Seidler A (1996) The extrinsic polypeptides of photosystem II. Biochim Biophys Acta 1277:35–60. doi: 10.1016/S0005-2728(96)00102-8 PubMedCrossRefGoogle Scholar
  70. Shen JR, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832. doi: 10.1021/bi00058a017 PubMedCrossRefGoogle Scholar
  71. Shen JR, Ikeuchi M, Inoue Y (1997) Analysis of the psbU gene encoding the 12-kDa extrinsic protein of photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803. J Biol Chem 272:17821–17826. doi: 10.1074/jbc.272.28.17821 PubMedCrossRefGoogle Scholar
  72. Shen JR, Qian M, Inoue Y, Burnap RL (1998) Functional characterization of Synechocystis sp. PCC delta psbU and delta psbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolution. Biochemistry 37:1551–1558. doi: 10.1021/bi971676i PubMedCrossRefGoogle Scholar
  73. Shen JR, Vermaas W, Inoue Y (1995) The role of cytochrome c-550 as studied through reverse genetics and mutant characterization in Synechocystis sp. PCC 6803. J Biol Chem 270:6901–6907. doi: 10.1074/jbc.270.12.6901 PubMedCrossRefGoogle Scholar
  74. Shimizu H, Shikanai T (2007) Dihydrodipicolinate reductase-like protein, CRR1, is essential for chloroplast NAD(P)H dehydrogenase in Arabidopsis. Plant J 52:539–547. doi: 10.1111/j.1365-313X.2007.03256.x PubMedCrossRefGoogle Scholar
  75. Sirpiö S, Allahverdiyeva Y, Suorsa M, Paakkarinen V, Vainonen J, Battchikova N et al (2007) TLP18.3, a novel thylakoid lumen protein regulating photosystem II repair cycle. Biochem J 406:415–425. doi: 10.1042/BJ20070460 PubMedCrossRefGoogle Scholar
  76. Spetea C, Hundal T, Lohmann F, Andersson B (1999) GTP bound to chloroplast thylakoid membranes is required for light-induced, multienzyme degradation of the photosystem II D1 protein. Proc Natl Acad Sci USA 96:6547–6552. doi: 10.1073/pnas.96.11.6547 PubMedCrossRefGoogle Scholar
  77. Spetea C, Hundal T, Lundin B, Heddad M, Adamska I, Andersson B (2004) Multiple evidence for nucleotide metabolism in the chloroplast thylakoid lumen. Proc Natl Acad Sci USA 101:1409–1414. doi: 10.1073/pnas.0308164100 PubMedCrossRefGoogle Scholar
  78. Steggerda SM, Paschal BM (2000) The mammalian Mog1 protein is a guanine nucleotide release factor for Ran. J Biol Chem 275:23175–23180. doi: 10.1074/jbc.C000252200 PubMedCrossRefGoogle Scholar
  79. Stewart M, Baker RP (2000) 1.9 Å resolution crystal structure of the Saccharomyces cerevisiae Ran-binding protein Mog1p. J Mol Biol 299:213–223. doi: 10.1006/jmbi.2000.3733 PubMedCrossRefGoogle Scholar
  80. Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815. doi: 10.1021/bi048394k PubMedCrossRefGoogle Scholar
  81. Suorsa M, Aro EM (2007) Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. Photosynth Res 93:89–100. doi: 10.1007/s11120-007-9154-4 PubMedCrossRefGoogle Scholar
  82. Suorsa M, Sirpiö S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, Aro EM (2006) PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem 281:145–150PubMedCrossRefGoogle Scholar
  83. Suzuki T, Minagawa J, Tomo T, Sonoike K, Ohta H, Enami I (2003) Binding and functional properties of the extrinsic proteins in oxygen-evolving photosystem II particle from a green alga, Chlamydomonas reinhardtii having his-tagged CP47. Plant Cell Physiol 44:76–84. doi: 10.1093/pcp/pcg010 PubMedCrossRefGoogle Scholar
  84. Suzuki T, Tada O, Makimura M, Tohri A, Ohta H, Yamamoto Y et al (2004) Isolation and characterization of oxygen-evolving photosystem II complexes retaining the PsbO, P and Q proteins from Euglena gracilis. Plant Cell Physiol 45:1168–1175. doi: 10.1093/pcp/pch131 PubMedCrossRefGoogle Scholar
  85. Sveshnikov D, Funk C, Schröder WP (2007) The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilises the donor side of photosystem II. Photosynth Res 93:101–109. doi: 10.1007/s11120-007-9171-3 PubMedCrossRefGoogle Scholar
  86. Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in cyanobacterium Synechosistis 6803. Plant Cell 16:2164–2175. doi: 10.1105/tpc.104.023515 PubMedCrossRefGoogle Scholar
  87. Tohri A, Dohmae N, Suzuki T, Ohta H, Inoue Y, Enami I (2004) Identification of domains on the extrinsic 23 kDa protein possibly involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II. Eur J Biochem 271:962–971. doi: 10.1111/j.1432-1033.2004.03998.x PubMedCrossRefGoogle Scholar
  88. van Wijk KJ, Bingsmark S, Aro EM, Andersson B (1995) In vitro synthesis and assembly of photosystem II core proteins. The D1 protein can be incorporated into photosystem II in isolated chloroplasts and thylakoids. J Biol Chem 270:25685–25695. doi: 10.1074/jbc.270.43.25685 PubMedCrossRefGoogle Scholar
  89. Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY et al (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474. doi: 10.1104/pp.105.070490 PubMedCrossRefGoogle Scholar
  90. Yamamoto Y (1988) Organization of the oxygen-evolution enzyme complex studied by butanol/water phase partitioning of spinach photosystem II particles. J Biol Chem 263:497–500PubMedGoogle Scholar
  91. Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170–16174. doi: 10.1074/jbc.M501550200 PubMedCrossRefGoogle Scholar
  92. Yi X, Hargett SR, Frankel LK, Bricker TM (2006) The PsbQ protein is required in Arabidopsis for photosystem II assembly/stability and photoautotrophy under low light conditions. J Biol Chem 281:26260–26267. doi: 10.1074/jbc.M603582200 PubMedCrossRefGoogle Scholar
  93. Yi X, Hargett SR, Liu H, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J Biol Chem 282:24833–24841. doi: 10.1074/jbc.M705011200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Kentaro Ifuku
    • 1
  • Seiko Ishihara
    • 1
  • Ren Shimamoto
    • 1
  • Kunio Ido
    • 1
  • Fumihiko Sato
    • 1
  1. 1.Graduate School of BiostudiesKyoto UniversityKyotoJapan

Personalised recommendations