Photosynthesis Research

, 98:199 | Cite as

Quantum efficiency distributions of photo-induced side-pathway donor oxidation at cryogenic temperature in photosystem II

  • Joseph L. Hughes
  • A. William Rutherford
  • Miwa Sugiura
  • Elmars Krausz
Regular Paper


We monitored illuminated-minus-dark absorption difference spectra in the range of 450–1100 nm induced by continuous illumination at 8 K of photosystem II (PSII) core complexes from Thermosynechococcus elongatus. The photo-induced oxidation of the side-path donors Cytb559, β-carotene and chlorophyll Z, as well as the concomitant stable (t 1/2 > 1 s) reduction of the first plastoquinone electron acceptor, QA (monitored by the well-known ‘C550’ shift), were quantified as a function of the absorbed photons per PSII. The QA photo-induced reduction data can be described by three distinct quantum efficiency distributions: (i) a very high efficiency of ~0.5–1, (ii) a middle efficiency with a very large range of ~0.014–0.2, and (iii) a low efficiency of ~0.002. Each of the observed side-path donors exhibited similar quantum efficiency distributions, which supports a branched pathway model for side-path oxidation where β-carotene is the immediate electron donor to the photo-oxidized chlorophyll (P680+). The yields of the observed side-path donors account quantitatively for the wide middle efficiency range of photo-induced QA reduction, but not for the PSII fractions that exhibit the highest and lowest efficiencies. The high-efficiency component may be due to TyrZ oxidation. A donor that does not exhibit an identified absorption in the visible-near-IR region is mainly responsible for the lowest efficiency component.


Photosystem II Side-path donor Secondary donor Quantum efficiency 



Redox active β-carotene


Side-path redox active Chl




The cytochrome b559 subunit of photosystem II

D1 and D2

Reaction center core proteins


Full width at half maximum


Primary electron donor in photosystem II


Photosystem II

QA and QB

Primary and secondary plastoquinone electron acceptors



T. elongatus

Thermosynechoccocus elongatus


Redox active tyrosine bound to the D1 protein



Alain Boussac is gratefully acknowledged for providing some of the T. elongatus PSII core complexes used in this work. Ronald Steffen is also gratefully acknowledged for his significant efforts in configuring the CCD-based spectrograph used in this work. This work was supported in part by a joint French-Australian Science and Technology (FAST) Programme (Australian DEST grant number FR07001), and the European Union through the Sixth Framework Programme SOLAR-H NEST STRP network and the Seventh Framework Programme SOLAR-H2 project number 212508. A.W. Rutherford also acknowledges support from the Research School of Chemistry, Australian National University, during his Craig Visiting Professorship


  1. Åhrling KA, Peterson S, Styring S (1997) An oscillating manganese electron paramagnetic resonance signal from the S0 state of the oxygen evolving complex in photosystem II. Biochemistry 36:13148–13152. doi: 10.1021/bi971815w PubMedCrossRefGoogle Scholar
  2. Boussac A, Rappaport F, Carrier P, Verbavatz J-M, Gobin R, Kirilovsky D et al (2004) Biosynthetic Ca2+/Sr2+ exchange in the photosystem II oxygen-evolving enzyme of Thermosynechococcus elongatus. J Biol Chem 279:22809–22819. doi: 10.1074/jbc.M401677200 PubMedCrossRefGoogle Scholar
  3. Butler WL (1973) Primary photochemistry of photosystem II of photosynthesis. Acc Chem Res 6:177–184. doi: 10.1021/ar50066a001 CrossRefGoogle Scholar
  4. Dawe EA, Land EJ (1975) Radical Ions derived from photosynthetic polyenes. J Chem Soc Faraday Trans I 71:2162–2169. doi: 10.1039/f19757102162 CrossRefGoogle Scholar
  5. Deák Z, Peterson S, Geijer P, Åhrling KA, Styring S (1999) Methanol modification of the electron paramagnetic resonance signals from the S0 and S1 states of the water-oxidizing complex of photosystem II. Biochim Biophys Acta 1412:240–249. doi: 10.1016/S0005-2728(99)00064-X PubMedCrossRefGoogle Scholar
  6. Faller P, Pascal A, Rutherford AW (2001) β-Carotene redox reactions in photosystem II: electron transfer pathway. Biochemistry 40:6431–6440. doi: 10.1021/bi0026021 PubMedCrossRefGoogle Scholar
  7. Faller P, Fufezan C, Rutherford AW (2005) Side-path electron donors: cytochrome b 559, chlorophyll Z and β-carotene. In: Wydrzynski TJ, Satoh K (eds) Photosystem II—the light-driven water:plastoquinone oxidoreductase. Springer, Dordrecht, pp 347–365Google Scholar
  8. Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838. doi: 10.1126/science.1093087 PubMedCrossRefGoogle Scholar
  9. Force DA, Randall DW, Lorigan GA, Clemens KL, Britt RD (1998) ESEEM studies of alcohol binding to the manganese cluster of the oxygen evolving complex of photosystem II. J Am Chem Soc 120:13321–13333. doi: 10.1021/ja982713b CrossRefGoogle Scholar
  10. Fufezan C, Zhang C, Krieger-Liszkay A, Rutherford AW (2005) Secondary quinone in photosystem II of Thermosynechococcus elongatus: semiquinone-iron EPR signals and temperature dependence of electron transfer. Biochemistry 44:12780–12789. doi: 10.1021/bi051000k PubMedCrossRefGoogle Scholar
  11. Fufezan C, Gross CM, Sjödin M, Rutherford AW, Krieger-Liszkay A, Kirilovsky D (2007) Influence of the redox potential of the primary quinone electron acceptor on photoinhibition in photosystem II. J Biol Chem 282:12492–12502. doi: 10.1074/jbc.M610951200 PubMedCrossRefGoogle Scholar
  12. Hanley J, Deligiannakis Y, Pascal A, Faller P, Rutherford AW (1999) Carotenoid oxidation in photosystem II. Biochemistry 38:8189–8195. doi: 10.1021/bi990633u PubMedCrossRefGoogle Scholar
  13. Hillmann B, Schlodder E (1995) Electron transfer reactions in photosystem II core complexes from Synechococcus at low temperature—difference spectrum of P680+QA /P680QA at 77 K. Biochim Biophys Acta 1231:76–88. doi: 10.1016/0005-2728(95)00068-T CrossRefGoogle Scholar
  14. Hughes JL, Krausz E (2007) Electronic spectroscopy. In: Scott RA, Lukehart CM (eds) Applications of physical methods to inorganic and bioinorganic chemistry. Wiley, New York, pp 79–98Google Scholar
  15. Hughes JL, Smith P, Pace R, Krausz E (2006) Charge separation in photosystem II core complexes induced by 690–730 nm excitation at 1.7 K. Biochim Biophys Acta 1757:841–851. doi: 10.1016/j.bbabio.2006.05.035 PubMedCrossRefGoogle Scholar
  16. Kaminskaya O, Kern J, Shuvalov VA, Renger G (2005) Extinction coefficients of cytochromes b559 and c550 of Thermosynechococcus elongatus and Cyt b559/PS II stoichiometry of higher plants. Biochim Biophys Acta 1708:333–341. doi: 10.1016/j.bbabio.2005.05.002 PubMedCrossRefGoogle Scholar
  17. Knaff DB, Arnon DL (1969) Spectral evidence for a new photoreactive component of the oxygen-evolving system in photosynthesis. Proc Natl Acad Sci USA 63:963–969. doi: 10.1073/pnas.63.3.963 PubMedCrossRefGoogle Scholar
  18. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution crystal structure of photosystem II. Nature 438:1040–1044. doi: 10.1038/nature04224 PubMedCrossRefGoogle Scholar
  19. Lubchenko V, Wolynes PG, Frauenfelder H (2005) Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J Phys Chem B 109:7488–7499. doi: 10.1021/jp045205z PubMedCrossRefGoogle Scholar
  20. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322Google Scholar
  21. Mathis P, Vermeglio A (1972) Photochem Photobiol 15:157–164. doi: 10.1111/j.1751-1097.1972.tb06235.x
  22. Mathis P, Vermeglio A (1974) Direct evidence for a back-reaction in photosystem II of spinach chloroplasts following flash excitation at low temperature. Biochim Biophys Acta 368:130–134. doi: 10.1016/0005-2728(74)90103-0 PubMedCrossRefGoogle Scholar
  23. Mathis P, Vermeglio A (1975) Chlorophyll radical cation in photosystem II of chloroplasts. Millisecond decay at low temperature. Biochim Biophys Acta 396:371–381. doi: 10.1016/0005-2728(75)90143-7 PubMedCrossRefGoogle Scholar
  24. McMahon BH, Müller JD, Wraight CA, Nienhaus GU (1998) Electron transfer and protein dynamics in the photosynthetic reaction center. Biophys J 74:2567–2587PubMedCrossRefGoogle Scholar
  25. Messinger J, Nugent JHA, Evans MCW (1997) Detection of an EPR multiline signal for the S0* state in photosystem II. Biochemistry 36:11055–11060. doi: 10.1021/bi9711285 PubMedCrossRefGoogle Scholar
  26. Moore TA, Dust D, Mathis P, Mialocq J-C, Chachaty C, Bensasson RV et al (1984) Photodriven charge separation in a carotenoporphyrin-quinone triad. Nature 307:630–632. doi: 10.1038/307630a0 CrossRefGoogle Scholar
  27. Moser CC, Dutton PL (1996) Outline of theory of protein electron transfer. In: Bendall DS (ed) Protein electron transfer. BIOS Scientific Publishers, Oxford, pp 1–21Google Scholar
  28. Murata N, Itoh S, Okada M (1973) Induction of chlorophyll a fluorescence in isolated spinach chloroplasts at liquid nitrogen temperature. Biochim Biophys Acta 325:463–471. doi: 10.1016/0005-2728(73)90207-7 PubMedCrossRefGoogle Scholar
  29. Nugent JHA, Muhiuddin IP, Evans MC (2002) Electron transfer from the water oxidizing complex at cryogenic temperatures: the S1 to S2 step. Biochemistry 41:4117–4126. doi: 10.1021/bi011320d PubMedCrossRefGoogle Scholar
  30. Peterson Årsköld S, Masters VM, Prince BJ, Smith PJ, Pace RJ, Krausz E (2003) Optical spectra of Synechocystis and spinach photosystem II preparations: identification of the D1-pheophytin energies and stark shifts. J Am Chem Soc 125:13063–13074. doi: 10.1021/ja034548s CrossRefGoogle Scholar
  31. Petrouleas V, Koulougliotis D, Ioannidis N (2005) Trapping of metalloradical intermediates of the S-states at liquid helium temperatures. Overview of the phenomenology and mechanistic implications. Biochemistry 44:6723–6728. doi: 10.1021/bi0503201 PubMedCrossRefGoogle Scholar
  32. Rappaport F, Cuni A, Xiong L, Sayre R, Lavergne J (2005) Charge recombination and thermoluminescence in photosystem II. Biophys J 88:1948–1958. doi: 10.1529/biophysj.104.050237 PubMedCrossRefGoogle Scholar
  33. Schenk CC, Diner B, Mathis P, Satoh K (1982) Flash-induced carotenoid radical cation formation in photosystem II. Biochim Biophys Acta 680:216–227. doi: 10.1016/0005-2728(82)90014-7 CrossRefGoogle Scholar
  34. Steffen R, Jackman K, Krausz ER (2008) Design and application of a high-precision, broad spectral range CCD-based absorption spectrometer with millisecond time resolution. Meas Sci Technol 19:075601. doi: 10.1088/0957-0233/19/7/075601 CrossRefGoogle Scholar
  35. Stewart DH, Brudvig GW (1998) Cytochrome b 559 of photosystem II. Biochim Biophys Acta 1367:63–87. doi: 10.1016/S0005-2728(98)00139-X PubMedCrossRefGoogle Scholar
  36. Styring S, Rutherford AW (1988) Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen-evolving system of photosystem II measured by EPR spectroscopy. Biochim Biophys Acta 933:378–387. doi: 10.1016/0005-2728(88)90046-1 CrossRefGoogle Scholar
  37. Sugiura M, Inoue Y (1999) Highly purified thermo-stable oxygen-evolving photosystem II core complex from the thermophilic cyanobacterium Synechococcus elongatus having His-tagged CP43. Plant Cell Physiol 40:1219–1231PubMedGoogle Scholar
  38. Tracewell CA, Brudvig GW (2003) Two redox-active β-carotene molecules in photosystem II. Biochemistry 42:9127–9136. doi: 10.1021/bi0345844 PubMedCrossRefGoogle Scholar
  39. Tracewell CA, Cua A, Stewart DH, Bocian DF, Brudvig GW (2001) Characterization of carotenoid and chlorophyll photooxidation in photosystem II. Biochemistry 40:193–203. doi: 10.1021/bi001992o PubMedCrossRefGoogle Scholar
  40. van Gorkom H (1974) Identification of the reduced primary electron acceptor of photosystem II as a bound semiquinone anion. Biochim Biophys Acta 347:439–442. doi: 10.1016/0005-2728(74)90081-4 PubMedCrossRefGoogle Scholar
  41. Wydrzynski TJ, Satoh K (eds) (2005) Photosystem II—the light-driven water:plastoquinone oxidoreductase. In: Govindjee (series ed) Advances in photosynthesis and respiration, vol. 22. Springer, Dordrecht, pp 786Google Scholar
  42. Zhang C, Styring S (2003) Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosineZ can be photooxidized at 5 K in the So and S1 states of the oxygen-evolving complex. Biochemistry 42:8066–8076. doi: 10.1021/bi0269299 PubMedCrossRefGoogle Scholar
  43. Zhang C, Boussac A, Rutherford AW (2004) Low-temperature electron transfer in photosystem II: a tyrosyl radical and semiquinone charge pair. Biochemistry 43:13787–13795. doi: 10.1021/bi048631j PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Joseph L. Hughes
    • 1
    • 2
  • A. William Rutherford
    • 1
    • 2
  • Miwa Sugiura
    • 3
  • Elmars Krausz
    • 1
  1. 1.Research School of ChemistryThe Australian National UniversityCanberraAustralia
  2. 2.iBiTec-S, CNRS URA 2096Gif-sur-YvetteFrance
  3. 3.Cell-Free Science and Technology Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations