Photosynthesis Research

, 97:167 | Cite as

Two unique cyanobacteria lead to a traceable approach of the first appearance of oxygenic photosynthesis

  • Mamoru Mimuro
  • Tatsuya Tomo
  • Tohru Tsuchiya
Regular Paper


The evolutionary route from anoxygenic photosynthetic bacteria to oxygenic cyanobacteria is discontinuous in terms of photochemical/photophysical reaction systems. It is difficult to describe this transition process simply because there are no recognized intermediary organisms between the two bacterial groups. Gloeobacter violaceus PCC 7421 might be a model organism that is suitable for analysis because it still possesses primordial characteristics such as the absence of thylakoid membranes. Whole genome analysis and biochemical and biophysical surveys of G. violaceus have favored the hypothesis that it is an intermediary organism. On the other hand, species differentiation is an evolutionary process that could be driven by changes in a small number of genes, and this process might give fair information more in details by monitoring of those genes. Comparative studies of genes, including those in Acaryochloris marina MBIC 11017, have provided information relevant to species differentiation; in particular, the acquisition of a new pigment, chlorophyll d, and changes in amino acid sequences have been informative. Here, based on experimental evidence from these two species, we discuss some of the evolutionary pathways for the appearance and differentiation of cyanobacteria.


Cyanobacteria Evolution Reaction center Pigment system Acaryochloris spp. Gloeobacter violaceus 









Reaction center



The authors thank Prof. A. Tanaka, Hokkaido University, and Dr. A. Murakami, Kobe University, for discussion and comments on the MS. This study was supported by a Grant-in-Aid for Creative Scientific Research (No. 17GS0314) from the Japanese Society for the Promotion of Science (JSPS), and by Scientific Research on Priority Areas “Comparative Genomics” (No’s 17018022 and 18017016) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, to MM, and by a Grant-in-Aid for Scientific Research (No. 19614007) from MEXT to T. Tomo.


  1. Allen JF, Martin W (2007) Out of thin air. Nature 445:610–612PubMedCrossRefGoogle Scholar
  2. Benjamin B, Finazzi G, Benson S, Barber J, Rappaport F, Telfer A (2007) Study of intersystem electron transfer in the chlorophyll d containing cyanobacterium Acaryochloris marina and a reappraisal of the redox properties of P740. Paper presented at the 14th international congress of photosynthesis, Scottish Exhibition and Conference Centre, Glasgow, 22–27 July 2007Google Scholar
  3. Blankenship RE (2001) Molecular evidences for evolution of photosynthesis. Trends Plant Sci 6:4–6PubMedCrossRefGoogle Scholar
  4. Diner BA, Rappaport F (2002) Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. Annu Rev Plant Biol 53:551–580PubMedCrossRefGoogle Scholar
  5. Evstigneev VB, Cherkashina NA (1970) Isolation of chlorophyll d from the alga Grateloupia dichotoma. Biochemistry (Moscow) 35:39–42Google Scholar
  6. Frese RN, Germano M, de Weerd FL, van Stokkum IHM, Shkuropatov AY, Shuvalov VA, van Gorkom HJ, van Grondelle R, Dekker JP (2003) Electric field effects on the chlorophylls, pheophytins, and β-carotenes in the reaction center of photosystem II. Biochemistry 42:9205–9213PubMedCrossRefGoogle Scholar
  7. Guglielmi G, Cohen-Bazire G, Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129:181–189CrossRefGoogle Scholar
  8. Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Can J Chem 37:507–514CrossRefGoogle Scholar
  9. Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95:13319–13323PubMedCrossRefGoogle Scholar
  10. Inoue H, Tsuchiya T, Satoh S, Miyashita H, Kaneko T, Tabata S, Tanaka A, Mimuro M (2004) Unique constitution of photosystem I with a novel subunit in the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 578:275–279PubMedCrossRefGoogle Scholar
  11. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3:109–136PubMedCrossRefGoogle Scholar
  12. Kato Y, Nakamura A, Suzuwa T, Yamashita M, Watanabe T (2007) Redox potentials and spectroscopic properties of the primary electron donor P700 of photosystem I. Plant Cell Physiol 48:S169 (Suppl)Google Scholar
  13. Kobayashi M, Ohashi S, Iwamoto K, Shiraiwa Y, Kato Y, Watanabe T (2007) Redox potential of chlorophyll d in vitro. Biochim Biophys Acta 1767:596–602PubMedCrossRefGoogle Scholar
  14. Koyama K, Tsuchiya T, Akimoto S, Yokono M, Miyashita H, Mimuro M (2006) New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 580:3457–3461PubMedCrossRefGoogle Scholar
  15. Koyama K, Suzuki H, Noguchi T, Akimoto S, Tsuchiya T, Mimuro M (2008) Oxygen evolution activities in the periplasm of cyanobacterium Gloeobacter violaceus PCC 7421. Biochim Biophys Acta 1777:369–378PubMedCrossRefGoogle Scholar
  16. Kühl M, Chen M, Ralph PJ, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433:820PubMedCrossRefGoogle Scholar
  17. Kumazaki S, Abiko K, Ikegami I, Iwaki M, Itoh S (2002) Energy equilibration and primary charge separation in chlorophyll d-based photosystem I reaction center isolated from Acaryochloris marina. FEBS Lett 530:153–157PubMedCrossRefGoogle Scholar
  18. Larkum AWD, Kühl M (2005) Chlorophyll d: the puzzle resolved. Trends Plant Sci 10:355–357PubMedCrossRefGoogle Scholar
  19. Manning WM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. J Biol Chem 151:1–19Google Scholar
  20. Mathis P (1990) Compared structure of plant and bacterial photosynthetic reaction centers. Evolutionary implications. Biochim Biophys Acta 1018:163–167CrossRefGoogle Scholar
  21. Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proc Natl Acad Sci USA 102:850–855PubMedCrossRefGoogle Scholar
  22. Mimuro M, Tanaka A (2004) The in vivo and in vitro reconstitution of pigment-protein complexes, and its implication in acquiring a new system. Photosynth Res 81:129–137CrossRefGoogle Scholar
  23. Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I (2004) Identification of the primary electron donor in PS II of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Lett 556:95–98PubMedCrossRefGoogle Scholar
  24. Mimuro M, Tsuchiya T, Inoue H, Sakuragi Y, Itoh Y, Gotoh T, Miyashita H, Bryant DA, Kobayashi M (2005) The secondary electron acceptor of photosystem I in Gloeobacter violaceus PCC7421 is menaquinone–4 that is synthesized by a unique but unknown pathway. FEBS Lett 579:3493–3496PubMedCrossRefGoogle Scholar
  25. Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383:402CrossRefGoogle Scholar
  26. Miyashita H, Adachi K, Kurano N, Ikemoto H, Chihara M, Miyachi S (1997) Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll. Plant Cell Physiol 38:274–281Google Scholar
  27. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et. sp. nov. (cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253CrossRefGoogle Scholar
  28. Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131PubMedCrossRefGoogle Scholar
  29. Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633PubMedCrossRefGoogle Scholar
  30. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145PubMedCrossRefGoogle Scholar
  31. Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173PubMedGoogle Scholar
  32. Ohkubo S, Miyashita H, Murakami A, Takeyama H, Tsuchiya T, Mimuro M (2006) Molecular detection of epiphytic Acaryochloris spp. on marine macroalgae. Appl Environ Microbiol 72:7912–7915PubMedCrossRefGoogle Scholar
  33. Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386PubMedCrossRefGoogle Scholar
  34. Prokhorenko VI, Holzwarth AR (2000) Primary processes and structure of the photosystem II reaction center: a photon echo study. J Phys Chem B 104:11563–11578CrossRefGoogle Scholar
  35. Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436CrossRefGoogle Scholar
  36. Sagromsky H (1960) Beitrag zur Kenntnis der Rotalgenpigmente III. Ber Deut Bot Ges 73:358–362Google Scholar
  37. Schlodder E, Çetin M, Eckert H-J, Schmitt F-J, Barber J, Telfer A (2007) Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Biochim Biophys Acta 1767:589–595PubMedCrossRefGoogle Scholar
  38. Selstam E, Campbell D (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166:132–135CrossRefGoogle Scholar
  39. Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G (2006) Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 8:3460–3466PubMedCrossRefGoogle Scholar
  40. Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515PubMedCrossRefGoogle Scholar
  41. Strain HH (1958) Chloroplast pigments and chromatographic analysis. Thirty-second annual Priestley lectures. The Pennsylvania State University, University Park, PennsylvaniaGoogle Scholar
  42. Swingley WD, Blankenship RE, Raymond J (2007) Insights into cyanobacterial evolution from comparative genomics. In: Herrero A, Flores E (eds) Genomics and molecular biology of cyanobacteria. Horizon Scientific Press, Norwich, UK, pp 22–43Google Scholar
  43. Swingley WD, Blankenship RE, Raymond J (2008a) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Mol Biol Evol 25:643–654PubMedCrossRefGoogle Scholar
  44. Swingley WD, Chen M, Cheung, Cheng PC, Conrad AL, Dejesa LC, Hao J, Honchak BM, Karbach LE, Kurdoglu A, Lahiri S, Mastrian SD, Miyashita H, Page L, Ramakrishna P, Satoh S, Sattley WM, Shimada Y, Taylor HL, Tomo T, Tsuchiya T, Wang ZT, Raymond J, Mimuro M, Blankenship RE, Touchman JW (2008b) Niche adaptation and genome expansion in the chlorophyll d-producing cyanobacterium Acaryochloris marina, Proc Natl Acad Sci USA 105:2005–2010Google Scholar
  45. Telfer A, Pascal A, Barber J, Schenderlein M, Schlodder E, Çetin M (2007) Electron transfer reaction in photosystem I and II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Paper presented at the 14th international congress of photosynthesis, Scottish Exhibition and Conference Centre, Glasgow, 22–27 July 2007Google Scholar
  46. Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium. Proc Natl Acad Sci USA 104:7283–7288PubMedCrossRefGoogle Scholar
  47. Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly-purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina, MBIC 11017. J Biol Chem. doi: 10.1074/jbc.M801805200
  48. Tsuchiya T, Takaichi S, Misawa N, Maoka T, Miyashita H, Mimuro M (2005) The cyanobacterium Gloeobacter violaceus PCC7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett 579:2125–2129PubMedCrossRefGoogle Scholar
  49. Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521PubMedCrossRefGoogle Scholar
  50. Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT (2006) Phylogenetic analyses of cyanobacterialgenomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  2. 2.Hall of Global Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations