Skip to main content

Advertisement

Log in

Two isoforms of ferredoxin:NADP+ oxidoreductase from wheat leaves: purification and initial biochemical characterization

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ferredoxin:NADP+ oxidoreductase is an enzyme associated with the stromal side of the thylakoid membrane in the chloroplast. It is involved in photosynthetic linear electron transport to produce NADPH and is supposed to play a role in cyclic electron transfer, generating a transmembrane pH gradient allowing ATP production, if photosystem II is non-functional or no NADP+ is available for reduction. Different FNR isoforms have been described in non-photosynthetic tissues, where the enzyme catalyses the NADPH-dependent reduction of ferredoxin (Fd), necessary for some biosynthetic pathways. Here, we report the isolation and purification of two FNR isoproteins from wheat leaves, called FNR-A and FNR-B. These forms of the enzyme were identified as products of two different genes, as confirmed by mass spectrometry. The molecular masses of FNR-A and FNR-B were 34.3 kDa and 35.5 kDa, respectively. The isoelectric point of both FNR-A and FNR-B was about 5, but FNR-B appeared more acidic (of about 0.2 pH unit) than FNR-A. Both isoenzymes were able to catalyse a NADPH-dependent reduction of dibromothymoquinone and the mixture of isoforms catalysed reduction of cytochrome c in the presence of Fd. For the first time, the pH- and ionic strength dependent oligomerization of FNRs is observed. No other protein was necessary for complex formation. The putative role of the two FNR isoforms in photosynthesis is discussed based on current knowledge of electron transport in chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DBMIB:

Dibromothymoquinone

Cyt b6f:

Cytochrome b6f complex

FAD:

Flavin adenine dinucleotide

FA:

Formic acid

Fd:

Ferredoxin

FNR:

Ferredoxin:NADP+ oxidoreductase

NADP:

Nicotinamide adenine dinucleotide phosphate

References

  • Apley EC, Wagner E, Engelbrecht S (1985) Rapid procedure for the preparation of ferredoxin-NADP+ oxidoreductase in molecularly pure form at 36 kilodaltons. Anal Biochem 150:145–154

    Article  PubMed  CAS  Google Scholar 

  • Arakaki AK, Ceccarelli EA, Carrillo N (1997) Plant-type ferredoxin-NADP+ reductase: A basal structural framework and a multipily of functions. FASEB J 11:133–140

    PubMed  CAS  Google Scholar 

  • Arnon DI, Chain RK (1975) Regulation of ferredoxin-catalysed photosynthetic phosphorylations. Proc Natl Acad Sci USA 72:4961–4965

    Article  PubMed  CAS  Google Scholar 

  • Avron M, Jegendorf AT (1956) A TPNH diaphorase from chloroplast. Arch Biochem Biophys 65:475–490

    Article  PubMed  CAS  Google Scholar 

  • Bates PA, Kelley LA, MacCallum RM et al (2001) Enhancement of protein modelling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM, Proteins: structure, function and genetics. Suppl 5:39–46

    Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  • Bojko M, Więckowski S (1995) Diaphorase activity of ferredoxin:NADP+ oxidoreductase in the presence of dibromothymoquinone. Phytochemistry 40:661–665

    Article  CAS  Google Scholar 

  • Bojko M, Więckowski S (2001) Three substrate binding site on spinach ferredoxin:NADP+ oxidoreductase. Studies with selectively acting inhibitors. Photosynthetica 39:553–556

    Article  CAS  Google Scholar 

  • Bojko M, Kruk J, Więckowski S (2003) Plastoquinones are effectively reduced by ferredoxin:NADP+ oxidoreductase in the presence of sodium cholate micelles. Significance for cyclic electron transport and chlororespiraion. Phytochemistry 64:1055–1060

    Article  PubMed  CAS  Google Scholar 

  • Bowsher CD, Fletcher GJ (2001) Ferredoxin:NADP+ oxidoreductase regulation in developing wheat leaf. In Proceedings of the 12th International Congress on Photosynthesis, Brisbane Convention & Exhibition Centre, Queensland, Australia, August 18–23

  • Bruns CM, Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2′-phospho-5′-AMP bound states. J Mol Biol 247:125–145

    Article  PubMed  CAS  Google Scholar 

  • Carrillo N, Ceccarelli EA (2003) Open questions in ferredoxin-NADP+ reductase catalytic mechanism. Eur J Biochem 270:1900–1915

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Yoch DC (1989) Isolation, characterisation and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol 171:5012–5016

    PubMed  CAS  Google Scholar 

  • Corneille S, Cournac L, Guedeney G et al (1998) Reduction of the plastoquinone pool by exogenous NADH and NADPH in higher plant chloroplasts. Characterization of a NAD(P)H-plastoquinone oxidoreductase activity. Biochim Biophys Acta 1363:59–69

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Prot Sci 8:978–984

    Article  CAS  Google Scholar 

  • Garnier J, Gibrat J-F, Robson B (1996) GOR secondary structure prediction method version IV. In: Doolittle RF (ed) Methods in enzymology, vol 266, pp 540–553

  • Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook, Humana Press, pp 571–607

  • Green LS, Yee BC, Buchanan BB et al (1991) Ferredoxin and ferredoxin-NADP+ reductase from photosynthetic and nonphotosynthetic tissues of tomato. Plant Physiol 96:1207–1213

    PubMed  CAS  Google Scholar 

  • Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hanke GT, Okutani S, Satomi Y et al (2005) Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant Cell Environ 28:1146–1157

    Article  CAS  Google Scholar 

  • Hasumi H, Nagata E, Nakamura S (1983) Molecular heterogenity of ferredoxin:NADP+ reductase from spinach leaves. Biochem Biophys Res Commun 110:280–286

    Article  PubMed  CAS  Google Scholar 

  • Heldt HW, Werdan K, Milovancev M et al (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314:224–241

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. Calif Agric Exp Stn Bull 347:36–39

    Google Scholar 

  • Hodges M, Miginiac-Maslow M (1993) The in vitro effects of ATP and protein phosphorylation on the activity of ferredoxin: NADP oxidoreductase from spinach chloroplasts. Plant Sci 90:21–29

    Article  CAS  Google Scholar 

  • Hosler JP, Yocum CF (1987) Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport. Plant Physiol 83:965–969

    PubMed  CAS  Google Scholar 

  • Jin T, Morigasaki S, Wada K (1994) Purification and characterisation of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vigna radiata) seedlings. Plant Physiol 106:697–702

    Article  PubMed  CAS  Google Scholar 

  • Kamińska J, Dzięcioł J, Kościelak J (1999) Triazine dyes as inhibitors and affnity ligands of glycosyltransferases. Glycoconjugate J 16:719–723

    Article  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2002) The ligand-binding site of bovine β-lactoglobulin: evidence for a function? J Mol Biol 318:1043–1055

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Krapp AR, Rodriguez RE, Poli HO et al (2002) The flavoenzyme ferredoxin (flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli. J Bacteriol 5:1474–1480

    Google Scholar 

  • Kurisu G, Kusunoki M, Katoh E et al (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP+ reductase. Nat Struct Biol 8:117–121

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lintala M, Allahverdiyeva Y, Kidron H et al (2007) Structural and functional characterization of ferredoxin-NADP+-oxidoreductase using knock-out mutants of Arabidopsis. Plant J 49:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Maeda M, Lee YH, Ikegami T et al (2005) Identification of the N- and C-terminal substrate binding segments of ferredoxin-NADP+ reductase by NMR. Biochemistry 44:10644–10653

    Article  PubMed  CAS  Google Scholar 

  • Matthijs HC, Coughlan SJ, Hind G (1986) Removal of ferredoxin:NADP+ oxidoreductase from thylakoid membranes, rebinding to depleted membranes, and identification of the binding site. J Biol Chem 261:12154–12158

    PubMed  CAS  Google Scholar 

  • Milani M, Balconi E, Aliverti A et al (2007) Ferredoxin-NADP+ reductase from Plasmodium falciparum undergoes NADP+-dependent dimerization and inactivation: functional and crystallographic analysis. J Mol Biol 367:501–513

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Okutani S, Hanke GT, Satomi Y et al (2005) Three maize leaf ferredoxin:NADPH oxidoreductases vary in subchloroplast location, expression, and interaction with ferredoxin. Plant Physiol 139:1451–1459

    Article  PubMed  CAS  Google Scholar 

  • Onda Y, Matsumura T, Kimata-Ariga Y et al (2000) Differential interaction of maize root ferredoxin:NADP(+) oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol 123:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Pasteur N, Peasteur G, Bonhomme F et al (1988) Practical isozyme genetics. Ellis Horwood Limited Publishers. Chichester. Halsted Press: a division of John Willey & Sons New York-Chichester-Brisbane-Toronto

  • Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  PubMed  CAS  Google Scholar 

  • Pessino S, Caelles C, Puigdomenech P et al (1994) Structure and characterization of the gene encoding the ferredoxin-NADP reductase-binding protein from Zea mays L. Gene 147:205–208

    Article  PubMed  CAS  Google Scholar 

  • Prasad GS, Kresge N, Muhlberg AB et al (1998) The crystal structure of NADPH:Ferredoxin reductase from Azotobacter vinelandii. Prot Sci 7:2541–2549

    CAS  Google Scholar 

  • Razquin P, Fillat MF, Schmitz S et al (1996) Expression of ferredoxin-NADP+ reductase in heterocysts from Anabaena sp. Biochem J 316:157–160

    PubMed  CAS  Google Scholar 

  • Rodriguez RE, Lodeyro A, Poli HO et al (2007) Transgenic tobacco plants overexpressing chloroplastic ferredoxin-NADP(H) reductase display normal rates of photosynthesis and increased tolerance to oxidative stress. Plant Physiol 143:639–649

    Article  PubMed  CAS  Google Scholar 

  • Shin M (2004) How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplast? Photosynth Res 80:307–313

    Article  PubMed  CAS  Google Scholar 

  • Shin M, Ishida H, Nozaki Y (1985) A new protein factor, connectein as a constituent of the large form of ferredoxin-NADP reductase. Plant Cell Physiol 26:559–563

    CAS  Google Scholar 

  • van Thor JJ, Geerlings TH, Matthijs HC et al (1999) Kinetic evidence for the PsaE dependent transient ternary complex photosystem I/Ferredoxin/Ferredoxin:NADP+ reductase in a cyanobacterium. Biochemistry 38:12735–12746

    Article  PubMed  CAS  Google Scholar 

  • van Thor JJ, Jeanjean R, Havaux M et al (2002) Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin:NADP+ reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N terminal domain. Biochim Biophys Acta 1457:129–144

    Google Scholar 

  • Weber N, Strotmann H (1993) On the function of subunit PsaE in chloroplast Photosystem I. Biochim Biophys Acta 1143:204–210

    Article  PubMed  CAS  Google Scholar 

  • Zanetti G, Cidaria D, Curti B (1982) Preparation of apoprotein from spinach ferredoxin-NADP+ reductase. Studies on the resolution process and characterization of the FAD reconstituted holoenzyme. Eur J Biochem 126:453–458

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin:NADP+ oxidoreductase is a subunit of then chloroplast cytochrome b6f complex. J Biol Chem 276:38159–38165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Maciej Kotlinski from Department of Plant Molecular Biology, Warsaw University, Miecznikowa 1, PL-02-096 Warsaw, Poland and Dr. Adam Jagielski for help in MS analysis. The authors also would like to thank Dr. Andrzej Waloszek for his critical reading of the manuscript. This work was financed from the budget of the Polish Ministry of Science for the years 2005–2008 under project No: 2P04A06328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazimierz Strzałka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grzyb, J., Malec, P., Rumak, I. et al. Two isoforms of ferredoxin:NADP+ oxidoreductase from wheat leaves: purification and initial biochemical characterization. Photosynth Res 96, 99–112 (2008). https://doi.org/10.1007/s11120-008-9289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9289-y

Keywords

Navigation