Skip to main content

Advertisement

Log in

Estimation of relative contribution of “mobile phycobilisome” and “energy spillover” in the light–dark induced state transition in Spirulina platensis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Previously, it was clarified that phycobilisome (PBS) mobility and energy spillover were both involved in light-to-dark induced state transitions of intact Spirulina platensis cells. In this work, by taking advantage of the characteristic fluorescence spectra of photosystem I (PSI) trimers and monomers as indicators, the relative contributions for the “mobile PBS” and “energy spillover” are quantitatively estimated by separating the fluorescence contribution of PBS mobility from that of PSI oligomeric change. Above the phase transition temperature (T PT) of the membrane lipids, the relative proportion of the contributions is invariable with 65% of “mobile PBS” and 35% of “energy spillover”. Below T PT, the proportion for the “mobile PBS” becomes larger under lowering temperature even reaching 95% with 5% “energy spillover” at 0°C. It is known that lower temperature leads to a further light state due to a more reduced or oxidized PQ pool. Based on the current result, it can be deduced that disequilibrium of the redox state of the PQ pool will trigger PBS movement instead of change in the PSI oligomeric state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

C-PC:

C-phycocyanin

Chl:

Chlorophyll

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

PBS:

Phycobilisome

PSI:

Photosystem I

PSII:

Photosystem II

PQ:

Plastoquinone

T PT :

Phase-transition temperature

References

  • Allen JF, Holmes NG (1986) A general model for regulation of photosynthetic unit function by protein phosphorylation. FEBS Lett 202:175–181

    Article  CAS  Google Scholar 

  • Barber J (1986) Regulation of energy transfer by cations protein phosphorylation in relation to thylakoid organization. Photosynth Res 10:243–253

    Article  CAS  Google Scholar 

  • Biggins J, Bruce D (1989) Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth Res 20:1–34

    Article  CAS  Google Scholar 

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    Article  PubMed  CAS  Google Scholar 

  • Bruce D, Brimble S, Bryant DA (1989) State transition in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 974:66–73

    Article  PubMed  CAS  Google Scholar 

  • Federman S, Malkin R, Scherz A (2000) Excitation energy transfer in aggregates of photosystem I and photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Can assembly of the pigment–protein complexes control the extent of spillover? Photosynth Res 64:199–207

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Krogmann D (2005) Discoveries in oxygenic photosynthesis (1727–2003): a perspective. In: Govindjee, Beatty JT, Gest H, Allen JF (eds) Discoveries in photosynthesis. Advances in photosynthesis and respiration, vol 20. Springer, The Netherlands, pp 63–105

    Chapter  Google Scholar 

  • Govindjee, Satoh K (1986) Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Orlando, pp 497–537

    Google Scholar 

  • Govindjee, Owens OVH, Hoch G (1963) A mass spectroscopic study of the emerson enhancement effect. Biochim Biophys Acta 75:281–284

    Article  PubMed  CAS  Google Scholar 

  • Joshua S, Mullineaux CW (2004) Phycobilisome diffusion is required for light-state transitions in cyanobacteria. Plant Physiol 135:2112–2119

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN, Holzwarth AR (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36:13830–13837

    Article  PubMed  CAS  Google Scholar 

  • Karapetyan NV, Shubin VV, Strasser RJ (1999) Energy exchange between the chlorophyll antennae of monomeric subunits within the Photosystem I trimeric complex of the cyanobacterium Spirulina platensis. Photosynth Res 61:291–301

    Article  CAS  Google Scholar 

  • Li DH, Xie J, Zhao YW, Zhao JQ (2003) Probing connection of PBS with the photosystems in intact cells of Spirulina platensis by temperature-induced fluorescence fluctuation. Biochim Biophys Acta 1557:35–40

    Article  PubMed  CAS  Google Scholar 

  • Li DH, Xie J, Zhao JQ, Xia AD, Li D, Gong Y (2004) Light-induced excitation energy redistribution in Spirulina platensis cells “spillover” or “mobile PBSs”? Biochim Biophys Acta 1608:114–121

    Article  PubMed  CAS  Google Scholar 

  • Li H, Li DH, Yang SZ, Xie J, Zhao JQ (2006) The state transition mechanism-simply depending on light-on and -off in Spirulina platensis. Biochim Biophys Acta 1757:1512–1519

    Article  PubMed  CAS  Google Scholar 

  • Li H, Yang SZ, Xie J, Zhao JQ (2007a) Probing the connection of PBSs to the photosystems in Spirulina platensis by artificially induced fluorescence fluctuations. J Lumin 122–123:294–296

    Article  CAS  Google Scholar 

  • Li H, Yang SZ, Xie J, Feng J, Gong Y, Zhao JQ (2007b) The origin of the temperature-induced fluorescence fluctuation in Spirulina platensis: temperature-sensitive mobility of PQ molecules. Photosynth Res 94:59–65

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhang JP, Xie J, Zhao JQ, Jiang L (2001) Temperature-induced decoupling of phycobilisomes from reaction centers. Biochim Biophys Acta 1504:229–234

    Article  PubMed  CAS  Google Scholar 

  • McConnell MD, Koop R, Vasilév S, Bruce D (2002) Regulation of the distribution of chlorophyll and phycobilin-absorbed excitation energy in cyanobacteria. A structure-based model for the light state transition. Plant Physiol 130:1201–1212

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phybobilisomes to photosytem I in a cyanobacterium. Biochim Biophys Acta 1100:285–292

    CAS  Google Scholar 

  • Mullineaux CW, Allen JF (1990) State 1–State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystem I and II. Photosynth Res 23:297–311

    Article  CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ, Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390:421–424

    Article  CAS  Google Scholar 

  • Murata N (1969) Control of excitation transfer in photosynthesis. Biochim Biophys Acta 172:242–251

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou GC, Govindjee (2005) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, The Netherlands, pp 1–42

    Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvent; verification of the concentration of chlorophyll standards by absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. John Wiley and Sons Inc., NY, pp 34–36

    Google Scholar 

  • Rakhimberdieva MG, Boichenko VA, Karapetyan NV, Stadnichuk IN (2001) Interaction of phycobilisomes with photosystem II dimers and Photosystem I monomers and trimers in the cyanobacterium Spirulina platensis. Biochemistry 40:15780–15788

    Article  PubMed  CAS  Google Scholar 

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV, Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophy Acta 1060:28–36

    Article  CAS  Google Scholar 

  • Williams WP, Allen JF (1987) State 1/state 2 changes in higher plants and algae. Photosynth Res 13:19–45

    Article  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution to the study of a cyanophycea: influence of various physical and chemical factors on the growth and photosynthesis of Spirulina maxima. Ph.D. Thesis, University of Paris, Paris

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (NSFC) (No. 30570422, 502211201, 90306013 and 3047037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Li, H., Xie, J. et al. Estimation of relative contribution of “mobile phycobilisome” and “energy spillover” in the light–dark induced state transition in Spirulina platensis . Photosynth Res 94, 315–320 (2007). https://doi.org/10.1007/s11120-007-9272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9272-z

Keywords

Navigation