Advertisement

Photosynthesis Research

, Volume 90, Issue 3, pp 215–222 | Cite as

Oxygen and light effects on the expression of the photosynthetic apparatus in Bradyrhizobium sp. C7T1 strain

  • M. S. Montecchia
  • N. L. Pucheu
  • N. L. Kerber
  • A. F. García
Regular Paper
  • 93 Downloads

Abstract

Photosynthetic bradyrhizobia are nitrogen-fixing symbionts colonizing the stem and roots of some leguminous plants like Aeschynomene. The effect of oxygen and light on the formation of the photosynthetic apparatus of Bradyrhizobium sp. C7T1 strain is described here. Oxygen is required for growth, but at high concentration inhibits the synthesis of bacteriochlorophyll (BChl) and of the photosynthetic apparatus. However, we show that in vitro, aerobic photosynthetic electron transport occurred leading to ADP photophosphorylation. The expression of the photosynthetic apparatus was regulated by oxygen in a manner which did not agree with earlier results in other photosynthetic bradyrhizobia since BChl accumulation was the highest under microaerobic conditions. This strain produces photosynthetic pigments when grown under cyclic illumination or darkness. However, under continuous white light illumination, a Northern blot analysis of the puf operon showed that, the expression of the photosynthetic genes of the antenna was considerable. Under latter conditions BChl accumulation in the cells was dependent on the oxygen concentration. It was not detectable at high oxygen tensions but became accumulated under low oxygen (microaerobiosis). It is known that in photosynthetic bradyrhizobia bacteriophytochrome photoreceptor (BphP) partially controls the synthesis of the photosystem in response to light. In C7T1 strain far-red light illumination did not stimulate the synthesis of the photosynthetic apparatus suggesting the presence of a non-functional BphP-mediated light regulatory mechanism.

Keywords

Bacteriophytochrome Bradyrhizobium Light regulation Oxygen regulation Photosynthetic rhizobia Photosystem formation puf operon 

Abbreviations

BChl

Bacteriochlorophyll

BphP

Bacteriophytochrome photoreceptor

LEDs

Light emitting diodes

PS

Photosystem

RC

Reaction center

Notes

Acknowledgements

We would like to acknowledge the financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina), the University of Buenos Aires (UBA, Argentina) and the Volkswagen Stiftung (Germany)

References

  1. Alazard D (1990) Nitrogen fixation in pure culture by rhizobia isolated from stem nodules of tropical Aeschynomene species. FEMS Microbiol Lett 68:177–182CrossRefGoogle Scholar
  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JA, Seidman JC, Struhl KS (1994) Current protocols in molecular biology, Section 2.4. John Wiley and Sons, New YorkGoogle Scholar
  3. Bauer CE, Bird TH (1996) Regulatory circuits controlling photosynthesis gene expression. Cell 85:5–8PubMedCrossRefGoogle Scholar
  4. Bauer CE, Elsen S, Swem LR, Swem DL, Massuda S (2003) Redox and light regulation of gene expression in photosynthetic prokaryotes. Phil Trans R Soc Lond B Biol Sci 358:147–154CrossRefGoogle Scholar
  5. Boivin C, Ndoye I, Molouba F, de Lajudie P, Dupuy N, Dreyfus B (1997) Stem nodulation in legumes: diversity, mechanisms and unusual characters. Crit Rev Plant Sci 16:1–30Google Scholar
  6. Clayton RK (1966) Spectroscopic analysis of Bchl in vivo and in vitro. Photochem Photobiol 5:669–677Google Scholar
  7. Eaglesham ARJ, Ellis JM, Evans WR, Fleischman DE, Hungria M, Hardy RWF (1990) The first photosynthetic N2-fixing Rhizobium. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen Fixation: achievements and objectives, Chapman and Hall, New York, pp 805–811Google Scholar
  8. Elsen S, Jaubert M, Pignol D, Giraud E (2005) PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57:17–26PubMedCrossRefGoogle Scholar
  9. Elsen S, Swem LR, Swem DL, Bauer CE (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279PubMedCrossRefGoogle Scholar
  10. Evans WR, Fleischman DE, Calvert HE, Pyati PV, Alter GM, Subba Rao NS (1990) Bacteriochlorophyll and photosynthetic reaction centers in Rhizobium strain BTAi1. Appl Environ Microbiol 56:3445–3449PubMedGoogle Scholar
  11. Fleischman D, Kramer DM (1998) Photosynthetic rhizobia. Biochim Biophys Acta 1364:17–36PubMedCrossRefGoogle Scholar
  12. Giraud E, Fardoux J, Fourrier N, Hannibal L, Genty B, Bouyer P, Dreyfus B, Verméglio A (2002) Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria. Nature 417:202–205PubMedCrossRefGoogle Scholar
  13. Giraud E, Fleischman D (2004) Nitrogen-fixing symbiosis between photosynthetic bacteria and legumes. Photosynth Res 82:115–130PubMedCrossRefGoogle Scholar
  14. Giraud E, Hannibal L, Fardoux J, Verméglio A, Dreyfus B (2000) Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva. Proc Natl Acad Sci USA 97:14795–14800PubMedCrossRefGoogle Scholar
  15. Giraud E, Zappa S, Jaubert M, Hannibal L, Fardoux J, Adriano JM, Bouyer P, Genty B, Pignol D, Verméglio A (2004) Bacteriophytochrome and regulation of synthesis of the photosynthetic apparatus in Rhodopseudomonas palustris: pitfalls of using laboratory strains. Photochem Photobiol Sci 3:587–591PubMedCrossRefGoogle Scholar
  16. Gould JM, Cather R, Winget GD (1972) Advances on the use of Cerenkov counting for determination of 32P in photophosphorylation research. Anal Biochem 50:540–548PubMedCrossRefGoogle Scholar
  17. Happ H, Braatsch S, Broschek V, Osterloh, Klug G (2005) Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol Microbiol 58:903–914PubMedCrossRefGoogle Scholar
  18. Harashima K, Kawazoe K, Yoshida I, Kamata H (1987) Light-stimulated aerobic growth of Erythrobacter species OCh 114. Plant Cell Physiol 28:365–374Google Scholar
  19. Jaubert M, Zappa S, Fardoux J, Adriano JM, Hannibal L, Elsen S, Lavergne J, Vermeglio A, Giraud E, Pignol D (2004). Light and redox control of photosynthesis gene expression in Bradyrhizobium: Dual roles of two PpsR. J Biol Chem 279:44407–44416PubMedCrossRefGoogle Scholar
  20. Klug G (1991) Endonucleolytic degradation of puf mRNA in Rhodobacter capsulatus is influenced by oxygen. Proc Natl Acad Sci USA 88:1765–1769PubMedCrossRefGoogle Scholar
  21. Klug G (1993) The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol Microbiol 9:1–7PubMedCrossRefGoogle Scholar
  22. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  23. Montecchia M, Kerber N, Pucheu N, Perticari A, García AF (2002) Analysis of genomic diversity among photosynthetic stem-nodulating rhizobial strains from northeast Argentina. System Appl Microbiol 25:423–433CrossRefGoogle Scholar
  24. Moskvin OV, Gomelsky L, Gomelsky M (2005) Transcriptome analysis of the Rhodobacter sphaeroides PpsR regulon: PpsR as a master regulator of photosystem development. J Bacteriol 187:2148–2156PubMedCrossRefGoogle Scholar
  25. Nishimura K, Shimada H, Ohta H, Masuda T, Shioi Y, Takamiya K (1996) Expression of the puf operon in an aerobic photosynthetic bacterium, Roseobacter denitrificans. Plant Cell Physiol 37:153–159PubMedGoogle Scholar
  26. Oh JI, Kaplan S (2001) Generalized approach to the regulation and integration of gene expression. Mol Microbiol 39:1116–1123PubMedCrossRefGoogle Scholar
  27. Penfold RJ, Pemberton JM (1994) Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides. J Bacteriol 176:2869–2876PubMedGoogle Scholar
  28. Ponnampalam SN, Buggy JJ, Bauer CE (1995) Characterization of an aerobic repressor that co-ordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol 177:2990–2997PubMedGoogle Scholar
  29. Shimada K (1995) Aerobic anoxygenic phototrophs. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 105–122Google Scholar
  30. Sugino J, Miyoshi J (1964) The specific precipitation of orthophosphate and some biochemical application. J Biol Chem 202:675–685Google Scholar
  31. Suyama T, Shigematsu T, Suzuki T, Tokiwa Y, Kanagawa T, Nagashima KVP, Hanada S (2002) Photosynthetic apparatus in Roseateles depolymerans 61A is transcriptionally induced by carbon limitation. Appl Environ Microbiol 68:1665–1673PubMedCrossRefGoogle Scholar
  32. Swem LR, Gong X, Yu C, Bauer C (2006) Identificationof a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 281:6768–6775PubMedCrossRefGoogle Scholar
  33. van Berkum P, Tuly RE, Keister DL (1995) Non pigmented and bacteriochlorophyll-containing bradyrhizobia isolated from Aeschynomene indica. Appl Environ Microbiol 61:623–629PubMedGoogle Scholar
  34. Wettlaufer SH, Hardy RWF (1995) Effect of oxygen and light on the accumulation of bacteriochlorophyll in the rhizobial strain BTAi1. Plant Cell Physiol 36:391–396Google Scholar
  35. Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117PubMedGoogle Scholar
  36. Young JPW, Downer HL, Eardly BD (1991) Phylogeny of the phototrophic Rhizobium strain BTAi 1 by polymerase chain reaction-based sequencing of a 16S rRNA segment. J Bacteriol 173:2271–2277PubMedGoogle Scholar
  37. Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724PubMedGoogle Scholar
  38. Zeilstra-Ryalls JH, Kaplan S (1995) Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J Bacteriol 177:6422–6431PubMedGoogle Scholar
  39. Zeilstra-Ryalls JH, Kaplan S (1998) Role of the fnrL gene in photosystem gene expression and photosynthetic growth of Rhodobacter sphaeroides 2.4.1. J Bacteriol 180:1496–1503PubMedGoogle Scholar
  40. Zeilstra-Ryalls JH, Kaplan S (2004) Oxygen intervention in the regulation of gene expression: the photosynthetic bacterial paradigm. Cell Mol Life Sci 61:417–436PubMedCrossRefGoogle Scholar
  41. Zucconi AP, Beatty JT (1988) Posttranscriptional regulation by light of the steady-state levels of mature B800–850 light-harvesting complexes in Rhodobacter capsulatus. J Bacteriol 170:877–882PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • M. S. Montecchia
    • 1
  • N. L. Pucheu
    • 1
  • N. L. Kerber
    • 1
  • A. F. García
    • 1
  1. 1.Instituto de Investigaciones Bioquímicas y Fisiológicas (IBYF-CONICET) and Cátedra de Microbiología Agrícola, Facultad de AgronomíaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations