Photosynthesis Research

, Volume 89, Issue 2–3, pp 193–200 | Cite as

Ascorbate peroxidase–thioredoxin interaction

  • Eric Gelhaye
  • Nicolas Navrot
  • Isabel K. Macdonald
  • Nicolas Rouhier
  • Emma Lloyd Raven
  • Jean-Pierre Jacquot


Proteomics data have suggested ascorbate peroxidase (APX) to be a potential thioredoxin-interacting protein. Using recombinant enzymes, we observed that incubation of pea cytosolic APX with reduced poplar thioredoxins h drastically inactivated the peroxidase. A similar inactivation is induced by reduced glutathione and dithiothreitol, whereas diamide and oxidized glutathione have no effect. Oxygen consumption measurements, modifications of the APX visible spectrum and protection by hydrogen peroxide scavenging enzymes suggest that APX oxidizes thiols leading to the generation of thiyl radicals. These radicals can in turn react with thiyl anions to produce the disulfide radical anions, which are responsible for oxygen reduction and subsequent hydrogen peroxide production. The APX inactivation is not due solely to hydrogen peroxide since fluorimetry indicates that the environment of the APX tryptophan residues is dramatically modified only in the presence of thiol groups. The physiological implications of this interaction are discussed.


Thioredoxins Ascorbate peroxidase Glutathione Inactivation Thiyl radical 



Ascorbate peroxidase


NADH thioredoxin reductase


NADPH–thioredoxin system




  1. Balmer Y, Koller A, del Val G, Manieri W, Schurmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci USA 100:370–375PubMedCrossRefGoogle Scholar
  2. Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E, Rouhier N, Jacquot JP, Manieri W, Schurmann P, Droux M, Buchanan BB (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proc Natl Acad Sci USA 101:2642–2647PubMedCrossRefGoogle Scholar
  3. Behm M, Jacquot JP (2000) Isolation and characterization of thioredoxin h from poplar xylem. Plant Physiol Biochem 38:363–369CrossRefGoogle Scholar
  4. Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220PubMedCrossRefGoogle Scholar
  5. Burner U, Obinger C (1997) Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett 411:269–274PubMedCrossRefGoogle Scholar
  6. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877PubMedCrossRefGoogle Scholar
  7. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281PubMedCrossRefGoogle Scholar
  8. Florencio FJ, Yee BC, Johnson TC, Buchanan BB (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch Biochem Biophys 266:496–507PubMedCrossRefGoogle Scholar
  9. Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20PubMedCrossRefGoogle Scholar
  10. Gelhaye E, Rouhier N, Laurent P, Sautiere PE, Martin F, Jacquot JP (2002) Isolation and characterization of an extended thioredoxin h from poplar. Physiol Plant 114:165–171PubMedCrossRefGoogle Scholar
  11. Gelhaye E, Rouhier N, Jacquot JP (2003) Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett 555:443–468PubMedCrossRefGoogle Scholar
  12. Gelhaye E, Rouhier N, Jacquot JP (2004a) The thioredoxin h system of higher plants. Plant Physiol Biochem 42:265–271CrossRefGoogle Scholar
  13. Gelhaye E, Rouhier N, Gerard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004b) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA 101:14545–14550CrossRefGoogle Scholar
  14. Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35PubMedCrossRefGoogle Scholar
  15. Goldman R, Stoyanovsky DA, Day BW (1995) Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 34:4765–4772PubMedCrossRefGoogle Scholar
  16. Guo Q, Detweiler CD, Mason RP (2004) Protein radical formation during lactoperoxidase-mediated oxidation of the suicide substrate glutathione: immunochemical detection of a lactoperoxidase radical-derived 5,5-dimethyl-1-pyrroline N-oxide nitrone adduct. J Biol Chem 279:13272–13283PubMedCrossRefGoogle Scholar
  17. Hiner AN, Rodríuez-López JN, Arnao MB, Arnao MB, Lloyd Raven E, Garcia-Canovas F, Acosta M (2000) Kinetic study of the inactivation of ascorbate peroxidase by hydrogen peroxide. Biochem J 348(2):321–328PubMedCrossRefGoogle Scholar
  18. Hiner AN, Martínez JI, Arnao MB Acosta M, Turner DD, Lloyd Raven E, Rodriguez-Lopez JN (2001) Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. Eur J Biochem 268:3091–3098PubMedCrossRefGoogle Scholar
  19. Jacquot JP, Rivera-Madrid R, Marinho P, Kollarova M, Le Marechal P, Miginiac-Maslow M, Meyer Y (1994) Arabidopsis thaliana NAPHP thioredoxin reductase. cDNA characterization and expression of the recombinant protein in Escherichia coli. J Mol Biol 235:1357–1363PubMedCrossRefGoogle Scholar
  20. Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657PubMedCrossRefGoogle Scholar
  21. Lad L, Mewies M, Raven EL (2002) Substrate binding and catalytic mechanism in ascorbate peroxidase: evidence for two ascorbate binding sites. Biochemistry 41:13774–13781PubMedCrossRefGoogle Scholar
  22. Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y (2001) Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci USA 98:14144–14149PubMedCrossRefGoogle Scholar
  23. Mandelman D, Jamal J, Poulos TL (1998) Identification of two electron-transfer sites in ascorbate peroxidase using chemical modification, enzyme kinetics, and crystallography. Biochemistry 37:17610–17617PubMedCrossRefGoogle Scholar
  24. Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4:2696–2706PubMedCrossRefGoogle Scholar
  25. Metcalfe CL, Ott M, Patel N, Singh K, Mistry SC, Goff HM, Raven EL (2004) Autocatalytic formation of green heme: evidence for H2O2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase. J Am Chem Soc 126:16242–16248PubMedCrossRefGoogle Scholar
  26. Meyer Y, Vignols F, Reichheld JP (2002) Classification of plant thioredoxins by sequence similarity and intron position. Methods Enzymol 347:394–402PubMedCrossRefGoogle Scholar
  27. Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342PubMedCrossRefGoogle Scholar
  28. Panchuk II, Volkov RA, Schöffl F (2002) Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853PubMedCrossRefGoogle Scholar
  29. Rouhier N, Gelhaye E, Sautiere PE, Brun A, Laurent P, Tagu D, Gerard J, de Fay E, Meyer Y, Jacquot JP (2001) Isolation and characterization of a new peroxiredoxin from poplar sieve tubes that uses either glutaredoxin or thioredoxin as a proton donor. Plant Physiol 127:1299–1309PubMedCrossRefGoogle Scholar
  30. Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G (2005) Identification of plant glutaredoxin targets. Antiox Red Signal 7:919–929CrossRefGoogle Scholar
  31. Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365CrossRefGoogle Scholar
  32. Sharp KH, Mewies M, Moody PC, Raven EL (2003a) Crystal structure of the ascorbate peroxidase–ascorbate complex. Nat Struct Biol 10:303–307CrossRefGoogle Scholar
  33. Sharp KH, Moody PCE, Raven EL (2003b) A new framework for understanding substrate binding and functional diversity in heme peroxidases. Dalton Trans 22:4208–4215CrossRefGoogle Scholar
  34. Sharp KH, Moody PCE, Brown KA, Raven EL (2004) Crystal structure of the ascorbate peroxidase–salicylhydroxamic acid complex. Biochemistry 43:8644–8651PubMedCrossRefGoogle Scholar
  35. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 372:1305–1319CrossRefGoogle Scholar
  36. Wolff SP (1994) Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol 233:182–189CrossRefGoogle Scholar
  37. Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65:1629–1640PubMedCrossRefGoogle Scholar
  38. Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T (2004) Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant Cell Physiol 45:18–27PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Eric Gelhaye
    • 1
  • Nicolas Navrot
    • 1
  • Isabel K. Macdonald
    • 2
  • Nicolas Rouhier
    • 1
  • Emma Lloyd Raven
    • 2
  • Jean-Pierre Jacquot
    • 1
  1. 1.Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110 Génomique Ecophysiologie et Ecologie Fonctionnelles, Faculté des SciencesNancy UniversitéVandoeuvre-lès-Nancy CedexFrance
  2. 2.Department of ChemistryUniversity of LeicesterLeicesterEngland

Personalised recommendations