Photosynthesis Research

, Volume 88, Issue 3, pp 269–285 | Cite as

A comparison of the three isoforms of the light-harvesting complex II using transient absorption and time-resolved fluorescence measurements

  • Miguel A. Palacios
  • Joerg Standfuss
  • Mikas Vengris
  • Bart F. van Oort
  • Ivo H.M. van Stokkum
  • Werner Kühlbrandt
  • Herbert van Amerongen
  • Rienk van Grondelle
Regular paper


In this article we report the characterization of the energy transfer process in the reconstituted isoforms of the plant light-harvesting complex II. Homotrimers of recombinant Lhcb1 and Lhcb2 and monomers of Lhcb3 were compared to native trimeric complexes. We used low-intensity femtosecond transient absorption (TA) and time-resolved fluorescence measurements at 77 K and at room temperature, respectively, to excite the complexes selectively in the chlorophyll b absorption band at 650 nm with 80 fs pulses and on the high-energy side of the chlorophyll a absorption band at 662 nm with 180 fs pulses. The subsequent kinetics was probed at 30–35 different wavelengths in the region from 635 to 700 nm. The rate constants for energy transfer were very similar, indicating that structurally the three isoforms are highly homologous and that probably none of them play a more significant role in light-harvesting and energy transfer. No signature has been found in the transient absorption measurements at 77 K for Lhcb3 which might suggest that this protein acts as a relative energy sink of the excitations in heterotrimers of Lhcb1/Lhcb2/Lhcb3. Minor differences in the amplitudes of some of the rate constants and in the absorption and fluorescence properties of some pigments were observed, which are ascribed to slight variations in the environment surrounding some of the chromophores depending on the isoform. The decay of the fluorescence was also similar for the three isoforms and multi-exponential, characterized by two major components in the ns regime and a minor one in the ps regime. In agreement with previous transient absorption measurements on native LHC II complexes, Chl b → Chl a energy transfer exhibited very fast channels but at the same time a slow component (ps). The Chls absorbing at around 660 nm exhibited both fast energy transfer which we ascribe to transfer from ‘red’ Chl b towards ‘red’ Chl a and slow transfer from ‘blue’ Chl a towards ‘red’ Chl a. The results are discussed in the context of the new available atomic models for LHC II.


chlorophyll a chlorophyll b energy transfer excitonic interactions light-harvesting complex 2 





excited state absorption


full width at half maximum


linear dichroism


light-harvesting complex II


optical density




Photosystem II


evolution associated difference spectra


stimulated emission


transient absorption


volume per volume


weight per volume


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Part of the work was supported by the ‘Stichting voor Fundamenteel Onderzoek der Materie (FOM)’, which is financially supported by the ‘Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)’.


  1. Agarwal R, Krueger BP, Scholes GD, Yang M, Yom J, Mets L, Fleming GR (2000) Ultrafast energy transfer in LHC-II revealed by three-pulse photon echo peak shift measurements. J Phys Chem B 104:2908–2918CrossRefGoogle Scholar
  2. Allen JF, Bennett J, Steinback KE, Arntzen CJ (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:25–29CrossRefGoogle Scholar
  3. Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001) Singlet-singlet annihilation kinetics in aggregates and trimers of LHC II. Biophys J 80:2409–2421PubMedGoogle Scholar
  4. Bittner T, Irggang KD, Renger G, Wasielewski MR (1994) Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light-harvesting complexes of Photosystem II (LHC II) from spinach. J Phys Chem 98:11821–11826CrossRefGoogle Scholar
  5. Bittner T, Wiederrecht GP, Irrgang KD, Renger G, Wasielewski MR (1995) Femtosecond transient absorption spectroscopy on the light-harvesting Chl a/b protein complex of Photosystem II at room temperature and 12 K. Chem Phys 194:311–322CrossRefGoogle Scholar
  6. Buck DR, Savikhin S, Struve W (1997) Ultrafast absorption difference spectra of the Fenna-Matthews-Olson protein at 19 K: Experiment and simulations. Biophys J 72:24–36PubMedGoogle Scholar
  7. Caffarri S, Croce R, Cattivelli L, Bassi R (2004) A look within LHC II: Differential analysis of the Lhb1–3 complexes building the major trimeric antenna complex of higher-plant photosynthesis. Biochemistry 43:9467–9476PubMedCrossRefGoogle Scholar
  8. Connelly JP, Müller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P, Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light-harvesting complex II from higher plants. J Phys Chem B 101:1902–1909CrossRefGoogle Scholar
  9. Croce R, Müller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in reconstituted major light-harvesting complex (LHC II) of higher plants. I. Femtosecond transient absorption measurements. Biophys J 80:901–915PubMedGoogle Scholar
  10. Digris AV, Skakum VV, Novikov EG, van Hoek A, Visser AJWG (1999) Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur Biophys J 28:526–531PubMedCrossRefGoogle Scholar
  11. Du M, Xie X, Mets L, Fleming GR (1994) Direct observation of ultrafast energy-transfer processes in light harvesting complex II. J Phys Chem 98:4736–4741CrossRefGoogle Scholar
  12. Gradinaru CC, Özdemir S, Gülen D, van Stokkum IHM, van Grondelle R, van Amerongen H (1998) The flow of excitation energy in LHC II monomers: Implications for the structural model of the major plant antenna. Biophys J 75:3064–3077PubMedGoogle Scholar
  13. Hemelrijk PW, Kwa SLS, van Grondelle R, Dekker JP (1992) Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim Biophys Acta 1098:159–166CrossRefGoogle Scholar
  14. Hobe S, Foerster R, Klingler J, Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34:10224–10228PubMedCrossRefGoogle Scholar
  15. Ide JP, Klug DR, Kühlbrandt W, Giorgi LB, Porter G (1987) The state of detergent solubilised light-harvesting chlorophyll-a/b protein complex as monitored by picosecond time-resolved fluorescence and circular dichroism. Biochim Biophys Acta 893:349–364CrossRefGoogle Scholar
  16. Işeri EI, Gülen D (2001) Chlorophyll transition dipole moment orientations and pathways for flow of excitation energy among the chlorophylls of the major plant antenna, LHC II. Eur Biophys J 30:344–353PubMedCrossRefGoogle Scholar
  17. Islam K (1987) The rate and extent of phosphorylation of the two light-harvesting chlorophyll a/b binding protein complex (LHC-II) polypeptides in isolated spinach thylakoids. Biochim Biophys Acta 893:333–341CrossRefGoogle Scholar
  18. Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184:1–19PubMedCrossRefGoogle Scholar
  19. Jansson S, Gustafsson P (1990) Type I and Type II genes for the chlorophyll a/b-binding protein in the gymnosperm Pinus sylvestris (Scots pince): cDNA cloning and sequence analysis. Plant Mol Biol 14:287–296PubMedCrossRefGoogle Scholar
  20. Jennings RC, Garlaschi FM, Zucchelli G (1991) Light-induced fluorescence quenching in the light-harvesting chlorophyll a/b protein complex. Photosyn Res 27:57–64CrossRefGoogle Scholar
  21. Ke B (2001) Photosynthesis, vol. 10 of Advances in Photosynthesis, chap. 12, Kluwer Academic Publishers, DordrechtGoogle Scholar
  22. Kleima FJ, Gradinaru CC, Calkoen F, van Stokkum IHM, van Grondelle R, van Amerongen H (1997) Energy transfer in LHC II monomers at 77 K studied by sub-picosecond transient absorption spectroscopy. Biochemistry 36:15262–15268PubMedCrossRefGoogle Scholar
  23. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallograph. Nature 367:614–621PubMedCrossRefGoogle Scholar
  24. Kwa SLS, van Amerongen H, Lin S, Dekker JP, van Grondelle R, Struve WS (1992) Ultrafast energy transfer in LHC-II trimers from the chl a/b light-harvesting antenna of Photosystem II. Biochim Biophys Acta 1102:202–212CrossRefGoogle Scholar
  25. Leupold D, Teuchner K, Ehlert J, Irrgang KD, Renger G, Lokstein H (2002) Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: A new approach to detect strong excitonic chlorophyll a/b coupling. Biophys J 82:1580–1585PubMedGoogle Scholar
  26. Liu Z, Yan H, Wang K, Kuang TJZ, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292PubMedCrossRefGoogle Scholar
  27. Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the Photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40:12552–12561PubMedCrossRefGoogle Scholar
  28. Novikov EG, van Hoek A, Visser AJWG, Hofstraat JW (1999) Linear algorithms for stretched exponential decay analysis. Opt Commun 166:189–198CrossRefGoogle Scholar
  29. Novoderezhkin V, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHC II complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B 109:10493–10504PubMedCrossRefGoogle Scholar
  30. Novoderezhkin V, Salverda JM, van Amerongen H, van Grondelle R (2003) Exciton modeling of energy-transfer dynamics in the LHC II complex of higher plants: A redfield theory approach. J Phys Chem B 107:1893–1912CrossRefGoogle Scholar
  31. Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2004) Energy-transfer dynamics in the LHC II complex of higher plants: Modified Redfield approach. J Phys Chem B 108:10363–10375CrossRefGoogle Scholar
  32. Nussberger S, Dekker JP, Kühlbrandt W, van Bolhuis BM, van Grondelle R, van Amerongen H (1994) Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry 33:14775–14783PubMedCrossRefGoogle Scholar
  33. Palacios MA, de Weerd FL, Ihalainen JA, van Grondelle R, van Amerongen H (2002) Superradiance and exciton (de)localization in light-harvesting complex II from green plants? J Phys Chem B 106:5782–5787CrossRefGoogle Scholar
  34. Palacios MA, Frese RN, Gradinaru CC, van Stokkum IHM, Permvardhan LL, Horton P, Ruban AV, van Grondelle R, van Amerongen H (2003) Stark spectroscopy of the light-harvesting complex II in different oligomerisation state. Biochim Biophys Acta 1605:83–95PubMedCrossRefGoogle Scholar
  35. Peterman EJG, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69:2670–2678PubMedGoogle Scholar
  36. Peterman EJG, Gradinaru CC, Calkoen F, Borst JC, van Grondelle R, van Amerongen H (1997) Xanthophylls in light-harvesting complex II of higher plants: Light harvesting and triplet quenching. Biochemistry 36:12208–12215PubMedCrossRefGoogle Scholar
  37. Pieper J, Rätsep M, Jankowiak R, Irrgang KD, Voigt J, Renger G, Small GJ (1999) Q y-Level structure and dynamics of solubilized light-harvesting complex II of green plants: Pressure and hole burning studies. J Phys Chem A 103:2412–2421CrossRefGoogle Scholar
  38. Renger T, May V (1997) Theory of multiple exciton effects in the photosynthetic antenna complex LHC-II. J Phys Chem B 101:7232–7240CrossRefGoogle Scholar
  39. Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP (1997) Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy. Biochim Biophys Acta 1321:61–70CrossRefGoogle Scholar
  40. Salverda JM, Vengris M, Krueger BP, Scholes GD, Czarnoleski AR, Novoderezhkin V, van Amerongen H, van Grondelle R (2003) Energy transfer in light-harvesting complexes II and CP29 of spinach studied with three pulse echo peak shift and transient grating. Biophys J 84:450–465PubMedCrossRefGoogle Scholar
  41. Standfuss J, Kühlbrandt W (2004) The three isoforms of the light-harvesting complex II. J Biol Chem 279:36884–36891PubMedCrossRefGoogle Scholar
  42. Standfuss J, van Scheltinga ACT, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemmical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24:919–928PubMedCrossRefGoogle Scholar
  43. Valkunas L, Cervinskas V, Trinkunas G, Müller MG, Holzwarth AR (1999) Effects of excited state mixing on transient absorption spectra in dimers: Application to photosynthetic light-harvesting complex II. J Chem Phys 111:3121–3132CrossRefGoogle Scholar
  44. van Amerongen H, Dekker JP (2003) Light-harvesting in Photosystem II. In: Parson WW (eds), Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, The Netherlands, pp. 219–251Google Scholar
  45. van Amerongen H, Kwa SLS, van Bolhuis BM and van Grondelle R (1994) Polarized fluorescence and absorption of macroscopically aligned light harvesting complex II. Biophys J 67:837–847PubMedGoogle Scholar
  46. van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic Excitons. World Scientific, Singapore, 1st edGoogle Scholar
  47. van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHC II, the major light-harvesting complex of green plants. J Phys Chem 105:604–617Google Scholar
  48. van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65CrossRefGoogle Scholar
  49. van Hoek A, Visser AJWG (1985) Artefact and distortion sources in time correlated single photon counting. Analyt Instrument 14:359–378CrossRefGoogle Scholar
  50. van Stokkum IHM, Larsen DS, van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657:82–104PubMedCrossRefGoogle Scholar
  51. Vasil’ev S, Irrgang KD, Schrötter T, Bergmann A, Eichler HJ, Renger G (1997) Quenching of chlorophyll a fluorescence in the aggregates of LHC II: Steady state fluorescence and picosecond relaxation kinetics. Biochemistry 36:7503–7512PubMedCrossRefGoogle Scholar
  52. Visser HM, Kleima FJ, Stokkum IHM, van Grondelle R, van Amerongen H (1996) Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy. Chem Phys 210:297–312CrossRefGoogle Scholar
  53. Visser HM, Kleima FJ, Stokkum IHM, van Grondelle R, van Amerongen H (1997) Probing the many energy-transfer processes in the photosynthetic light-harvesting complex II at 77 K using energy-selective sub-picosecond transient absorption spectroscopy. Chem Phys 215:299CrossRefGoogle Scholar
  54. Vos K, van Hoek A, Visser AJWG (1987) Application of a reference deconvolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Eur J Biochem 165:55–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Miguel A. Palacios
    • 1
    • 4
  • Joerg Standfuss
    • 3
  • Mikas Vengris
    • 1
  • Bart F. van Oort
    • 2
  • Ivo H.M. van Stokkum
    • 1
  • Werner Kühlbrandt
    • 3
  • Herbert van Amerongen
    • 2
  • Rienk van Grondelle
    • 1
  1. 1.Department of Biophysics and Physics of Complex Systems, Division of Physics and AstronomyFaculty of␣Sciences, Vrije UniversiteitAmsterdamThe Netherlands
  2. 2.Laboratory of Biophysics, Wageningen UniversiteitWageningenThe Netherlands
  3. 3.Department of␣Structural BiologyMax Planck Institute of BiophysicsHessenGermany
  4. 4.Philips Research Laboratories, Care & Health ApplicationsEindhovenThe Netherlands

Personalised recommendations