Photosynthesis Research

, Volume 87, Issue 1, pp 83–103 | Cite as

The influence of bridging ligand electronic structure on the photophysical properties of noble metal diimine and triimine light harvesting systems

  • Xian-yong Wang
  • Andre Del Guerzo
  • Sujoy Baitalik
  • Gerald Simon
  • George B. Shaw
  • Lin X. Chen
  • Russell Schmehl
Regular paper


This manuscript discusses the photophysical behavior of transition metal complexes of Ru(II) and Os(II) employed in development of light harvesting arrays of chromophores. Particular emphasis is placed on the relationship between the photophysical behavior of complexes having metal-to-ligand charge transfer (MLCT) excited states and the electronic characteristics of bridging ligands used in preparing oligometallic complexes. Examples are presented that discuss intramolecular energy migration in complexes having two distinct MLCT chromophores with bridging ligands that only very weakly couple the two chromophores. In addition, systems having bridging ligands with localized triplet excited states lower in energy than the MLCT state of the metal center to which they are attached are discussed. These systems very often have excited states localized on the bridging ligand with excited state lifetimes on the order of tens of microseconds. Finally, systems having Fe(II) metal centers, with very low energy MLCT states, are discussed. In complexes also containing bridging ligands with low energy triplet states, energy partitioning between the Fe center MLCT state (or Fe localized ligand field states) and the ligand triplet state is observed; the two states relax to the ground state via parallel pathways, but the Fe(II) center does not serve as an absolute excitation energy sink.


intraligand intramolecular energy transfer ligand localized metal-to-ligand charge transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank the U.S. Department of Energy, Division of Science (#DE-FG02–96 ER14617) for support of this work. In addition, RHS wishes to thank the many graduate and undergraduate students that contributed a great deal to this work; some of their efforts are recognized in the citations in this article.


  1. Baitalik S, Wang, X.-Y, Schmehl RH, (2004) A trimetallic mixed Ru(II)/Fe(II) terpyridyl complex with a long-lived excited state in solution at room temperatureJ Am Chem Soc 126:16304–16305PubMedCrossRefGoogle Scholar
  2. Balazs GC, del Guerzo A, Schmehl RH, (2005) Photophysical behavior and intramolecular energy transfer in Os(II) diimine complexes covalently linked to anthracene Photochem Photobiol Sci 4(1):89–94PubMedCrossRefGoogle Scholar
  3. Balzani V, Juris A, (2001) Photochemistry and photophysics of Ru(II)-polypyridine complexes in the Bologna group. From early studies to recent developments Coord Chem Rev 211: 97–115CrossRefGoogle Scholar
  4. Baranoff E, Collin J-P, Flamigni L, Sauvage J-P, (2004) From ruthenium(II) to iridium(III): 15 years of triads based on bis-terpyridine complexes Chem Soc Revs 33(3):147–155CrossRefGoogle Scholar
  5. Barigelletti F, Flamigni L, Balzani V, Collin JP, Sauvage JP, Sour A, Constable EC, Thompson AMW, (1994) Intramolecular energy transfer through phenyl bridges in rod-like dinuclear Ru(II)/Os(II) terpyridine-type complexes Coord Chem Rev 132: 209–214CrossRefGoogle Scholar
  6. Barigelletti F, Juris A, Balzani V, Belser P, Von Zelewsky A, (1987) Temperature dependence of the bis(2,2’-bipyridine)dicyanoruthenium(II) and bis(2,2’-bipyridine)(2,2’-isobiquinoline)ruthenium(II) luminescenceJ Phys Chem 91(5):1095–1098CrossRefGoogle Scholar
  7. Belser P, Dux R, Baak M, De Cola L, Balzani V, (1995) Electronic energy transfer in a supramolecular species containing the [Ru(bpy)3]2+, [Os(bpy)3]2+, and anthracene chromophoric units Angew Chem Int Ed Engl 34(5):595–598CrossRefGoogle Scholar
  8. Bergkamp MA, Guetlich P, Netzel TL, Sutin N, (1983) Lifetimes of the ligand-to-metal charge-transfer excited states of iron(III) and osmium(III) polypyridine complexes. Effects of isotopic substitution and temperature J Phys Chem 87(20):3877–3883CrossRefGoogle Scholar
  9. Bignozzi CA, Bortolini O, Chiorboli C, Indelli MT, Rampi MA, Scandola F, (1992) Intramolecular energy transfer in ruthenium(II)–chromium(III) chromophore–luminophore complexes. Ru(bpy)2[Cr(cyclam)(CN)2]24+Inorg Chem 31(2):172–177CrossRefGoogle Scholar
  10. Bignozzi CA, Indelli MT, Scandola F, (1989) Bis(2,2’-bipyridine)ruthenium(II)–hexacyanochromate(III) chromophore–luminophore complexes. Intramolecular energy transfer, excited-state intervalence transfer, and doublet-doublet annihilationJ Am Chem Soc 111(14):5192–5198CrossRefGoogle Scholar
  11. Bignozzi CA, Schoonover JR, Scandola F, (1997) A supramolecular approach to light harvesting and sensitization of wide-bandgap semiconductors: antenna effects and charge separationProg Inorg Chem 44:1–95CrossRefGoogle Scholar
  12. Bilakhiya AK, Tyagi B., Paul P, Natarajan P, (2002) Di- and tetranuclear ruthenium(II) and/or osmium(II) complexes of polypyridyl ligands bridged by a fully conjugated aromatic spacer: synthesis, characterization, and electrochemical and photophysical studies Inorg Chem 41(15):3830–3842PubMedCrossRefGoogle Scholar
  13. Bilakhiya Anvarhusen K, Tyagi B, Paul P, Natarajan P, (2002) Di- and tetranuclear ruthenium(II) and/or osmium(II) complexes of polypyridyl ligands bridged by a fully conjugated aromatic spacer: synthesis, characterization, and electrochemical and photophysical studies Inorg Chem 41(15):3830–3842PubMedCrossRefGoogle Scholar
  14. Castagnola NB, Dutta PK, (1999) Artificial photosynthesis using zeolitesJ Photosci 6(3):91–96Google Scholar
  15. Chambron JC, Chardon-Noblat S, Harriman A, Heitz V, Sauvage JP, (1993) Photoinduced electron transfer in multiporphyrin clusters and rotaxanesPure Appl Chem 65(11):2343–2392Google Scholar
  16. Chang CJ, Yeh C-Y, Nocera DG, (2002) Porphyrin Architectures bearing functionalized xanthene spacers J Org Chem 67(4):1403–1406PubMedCrossRefGoogle Scholar
  17. Chen J, Mitsuishi M, Aoki A, Miyashita T, (2002) Photocurrent amplification by an energy/electron transfer cascade in polymer Langmuir-Blodgett films Chem Commun(23):2856–2856CrossRefGoogle Scholar
  18. Chiorboli C, Rodgers MAJ, Scandola F, (2003) Ultrafast processes in bimetallic dyads with extended aromatic bridges. Energy- and electron-transfer pathways in tetrapyridophenazine-bridged complexesJ Am Chem Soc 125(2):483–491PubMedCrossRefGoogle Scholar
  19. Cleary RL, Byrom KJ, Bardwell DA, Jeffery JC, Ward MD, Calogero G, Armaroli N, Flamigni L, Barigelletti F, (1997) Intercomponent electronic energy transfer in heteropolynuclear complexes containing ruthenium- and rhenium-based chromophores bridged by an asymmetric quaterpyridine ligand Inorg Chem 36(12):2601–2609CrossRefGoogle Scholar
  20. Collin J-P, Harriman A, Heitz V, Odobel F, Sauvage J-P, (1996) Transition metal-assembled multiporphyrinic systems as models of photosynthetic reaction center Coord Chem Rev 148 63–69CrossRefGoogle Scholar
  21. Cox A, (1997) Photochemical aspects of solar energy conversion Photochemistry 28:455–462CrossRefGoogle Scholar
  22. Creutz C, Chou M, Netzel TL, Okumura M, Sutin N, (1980) Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II) J Am Chem Soc 102(4):1309–1319CrossRefGoogle Scholar
  23. Crosby GA, Elfring WH, (1976) Excited states of mixed ligand chelates of ruthenium(II) and rhodium(III)PJ Phys Chem 80(20): 2206–2211CrossRefGoogle Scholar
  24. Damrauer NH, McCusker JK, (1999) Ultrafast dynamics in the metal-to-ligand charge transfer excited-state evolution of [Ru(4,4’-diphenyl-2,2’-bipyridine)3]2+ J Phys Chem A 103(42):8440–8446CrossRefGoogle Scholar
  25. De Cola L, Barigelletti F, Balzani V, Belser P, Von Zelewsky A, Seel C, Frank M, Voegtle F, (1992) Ruthenium(II) and/or osmium(II) trimetallic complexes of tris(bipyridine) bridging ligands. Absorption spectra, luminescence properties, electrochemical behavior, and intercomponent energy transfer NATO ASI Ser., Ser C 371:157–180Google Scholar
  26. De Cola L, Barigelletti F, Balzani V, Hage R, Haasnoot JG, Reedijk J, Vos JG, (1991) Electronic energy transfer in bimetallic ruthenium–osmium complexes containing the 3,5−bis(pyridin-2-yl)-1,2,4-triazolate bridging ligand Chem Phys Lett 178(5–6):491–496CrossRefGoogle Scholar
  27. De Cola L, Belser P, (1998) Photoinduced energy- and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes Coord Chem Rev 177:301–346CrossRefGoogle Scholar
  28. Del Guerzo A, Balazs C, Fages F, and Schmehl RH (2000) Long-lived metallic charge transfer and organic intraligand triplet states in Ru(II)-pyrene and Os(II)-anthracene complexes, Abstracts of Papers – American Chemical Society 220th National MeetingGoogle Scholar
  29. Del Guerzo A, Leroy S, Fages F, Schmehl RH, (2002) Photophysics of Re(I) and Ru(II) diimine complexes covalently linked to pyrene: contributions from intra-ligand charge transfer states Inorg Chem 41(2):359–366PubMedCrossRefGoogle Scholar
  30. Demas JN (1983) Excited State Lifetime Measurements, Dekker, New York, 273 ppGoogle Scholar
  31. Denti G, Campagna S, Sabatino L, Serroni S, Ciano M, and Balzani V. (1991) Towards an artificial photosynthesis di-, tri-, tetra-, and hepta-nuclear luminescent and redox-reactive metal complexes, Photochem Convers Storage Sol. Energy, Proc Int Conf 8th, pp. 27–45Google Scholar
  32. Denti G, Serroni S, Campagna S, Juris A, Ciano M and Balzani V, (1992)“\”Complexes as metals\” and \”complexes as ligands\” synthetic strategies to design supramolecular compounds featuring made-to-order luminescent and redox properties. Perspect Coord Chem 153–164Google Scholar
  33. El-ghayoury A, Harriman A, Khatyr A, Ziessel R, (2000) Intramolecular triplet energy transfer in metal polypyridine complexes bearing ethynylated aromatic groups J Phys Chem A 104(7):1512–1523CrossRefGoogle Scholar
  34. Endicott JF, Schlegel HB, Uddin MJ, Seniveratne DS, (2002a) MLCT excited states and charge delocalization in some ruthenium-ammine-polypyridyl complexes Coord Chem Revs 229(1–2):95–106CrossRefGoogle Scholar
  35. Endicott JF, Uddin MJ, Schlegel HB, (2002b) Some spectroscopic aspects of electron transfer in ruthenium(II) polypyridyl complexes Res Chem Intermed 28(7–9):761–777CrossRefGoogle Scholar
  36. Fan J, Shi W, Tysoe S, Strekas TC, Gafney HD, (1989) Temperature dependence of the photoinduced disproportionation of tris(bipyridine) ruthenium(2+) on porous Vycor glass J Phys Chem 93(1):373–376CrossRefGoogle Scholar
  37. Fujihira M (1993) Artificial photosynthesis by monolayer assemblies. Photochem Photoelectrochem Convers Storage Sol Energy, Proc 9th Int. Conf., pp. 193–216Google Scholar
  38. Furue M, Yoshidzumi T, Kinoshita S, Kushida T, Nozakura S, Kamachi M. (1991) Intramolecular energy transfer in covalently linked poly pyridine ruthenium(II)/osmium(II) binuclear complexes. Ru(II)(bpy)2Mebpy-(CH2)n-MebpyOs(II)(bpy)2 (n=2, 3, 5, 7) Bull Chem Soc Jpn 64(5):1632–1640CrossRefGoogle Scholar
  39. Goze C, Kozlov DV, Tyson DS, Ziessel R, Castellano FN, (2003) Synthesis and photophysics of ruthenium(II) complexes with multiple pyrenylethynylene subunits New J Chem 27(12):1679–1683CrossRefGoogle Scholar
  40. Guerrero J., Piro OE, Wolcan E, Feliz MR, Ferraudi G, Moya SA, (2001) Photochemical and photophysical reactions of fac-rhenium(I) tricarbonyl complexes. effects from binucleating spectator ligands on excited and ground state processes Organometallics 20(13):2842–2853CrossRefGoogle Scholar
  41. Guldi DM, Maggini M, Menna E, Scorrano G, Ceroni P, Marcaccio M, Paolucci F, Roffia S, (2001) A photosensitizer dinuclear ruthenium complex: intramolecular energy transfer to a covalently linked fullerene acceptor Chem: Eur J 7(8):1597–1605CrossRefGoogle Scholar
  42. Gust D, Moore TA, Moore AL, (2001) Mimicking photosynthetic solar energy transductionAcc Chem Res 34(1):40–48PubMedCrossRefGoogle Scholar
  43. Harriman A, Khatyr A, Ziessel R, Benniston AC, (2000) An unusually shallow distance-dependence for triplet-energy transferAngew Chem, Int Ed 39(23):4287–4290CrossRefGoogle Scholar
  44. Holten D, Bocian DF and Lindsey JS (2002) Probing electronic communication in covalently linked multiporphyrin arrays. A guide to the rational design of molecular photonic devices. Acc Chem Res 35(1):Google Scholar
  45. Hong B, Woodcock SR, Saito SK, Ortega JV, (1998) Luminescent and redox-active ruthenium(II) and osmium(II) complexes with a rigid allene-bridged polyphosphine J Chem Soc, Dalton Trans(16):2615–2624CrossRefGoogle Scholar
  46. Hungerford G, Van Der Auweraer M, Amabilino DB, (2001) Intramolecular fluorescence quenching in porphyrin-bearing (2)catenates J Porphyrins Phthalocyanines 5(8):633–644CrossRefGoogle Scholar
  47. Jandrasics EZ, Keene FR, (1997) Synthesis and properties of mononuclear tris(heteroleptic) osmium(II) complexes containing bidentate polypyridyl ligands J Chem Soc, Dalton Trans(2):153–159CrossRefGoogle Scholar
  48. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A, (1988) Ruthenium(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence Coord Chem Rev8485–277CrossRefGoogle Scholar
  49. Kalyanasundaram K, (1982) Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogs Coord Chem Rev46159–244CrossRefGoogle Scholar
  50. Kim WY (1996) Synthesis and Photophysical Properties of Polyphenyl Bridged Multimetallic Transition Metal Complexes. Ph.D. Dissertation, Tulane University, New Orleans, LA,p. 225Google Scholar
  51. Kim WYand Schmehl RH (1996) Photoinduced intramolecular energy transfer in rigidly bridged bimetallic RU(II) complexes. Book of Abstracts, 211th ACS National Meeting, New Orleans, LA, March 24–28Google Scholar
  52. Kober EM, Caspar JV, Lumpkin RS, Meyer TJ, (1986) Application of the energy gap law to excited-state decay of osmium(II)–polypyridine complexes: calculation of relative nonradiative decay rates from emission spectral profilesJ Phys Chem 90(16):3722–3734CrossRefGoogle Scholar
  53. Kober EM, Sullivan BP, Meyer TJ, (1984) Solvent dependence of metal-to-ligand charge-transfer transitions. Evidence for initial electron localization in MLCT excited states of 2,2’-bipyridine complexes of ruthenium(II) and osmium(II) Inorg Chem 23(14):2098–2104CrossRefGoogle Scholar
  54. Kozlov DV, Tyson DS, Goze C., Ziessel R, Castellano FN, (2004) Room temperature phosphorescence from ruthenium(II) complexes bearing conjugated pyrenylethynylene subunitsInorg Chem 43(19):6083–6092PubMedCrossRefGoogle Scholar
  55. Krausz E, Ferguson J, (1989) The spectroscopy of the tris(bipyridine)ruthenium(2+) system Prog Inorg Chem37293–390CrossRefGoogle Scholar
  56. Kumble R, Palese S, Lin VSY, Therien MJ, Hochstrasser RM, (1998) Ultrafast dynamics of highly conjugated porphyrin arrays J Am Chem Soc 120(44):11489–11498CrossRefGoogle Scholar
  57. Lammi RK, Wagner RW, Ambroise A, Diers JR, Bocian DF, Holten D, Lindsey JS, (2001) Mechanisms of excited-state energy-transfer gating in linear versus branched multiporphyrin arrays J Phys Chem B 105(22):5341–5352CrossRefGoogle Scholar
  58. Leveque J, Elias B, Moucheron C, Kirsch-De Mesmaeker A, (2005) Dendritic tetranuclear Ru(II) complexes based on the nonsymmetrical PHEHAT bridging ligand and their building blocks: synthesis, characterization, and electrochemical and photophysical propertiesInorg Chem 44(2): 393–400PubMedCrossRefGoogle Scholar
  59. Liang YY, Baba AI, Kim WY, Atherton SJ, Schmehl RH, (1996a) Intramolecular exchange energy transfer in a bridged bimetallic transition metal complex: calculation of rate constants using emission spectral fitting parameters J Phys Chem 100(47):18408–18414CrossRefGoogle Scholar
  60. Liang YY, Baba AI, Kim WY, Atherton SJ, Schmehl RH, (1996b) Intramolecular exchange energy transfer in a bridged bimetallic transition metal complex: calculation of rate constants using emission spectral fitting parameters J Phys Chem 100(47):18408–18414CrossRefGoogle Scholar
  61. Lin VSY, DiMagno SG, Therien MJ, (1994) Highly conjugated, acetylenyl bridged porphyrins: new models for light-harvesting antenna systems Science 264(5162):1105–1111PubMedCrossRefGoogle Scholar
  62. Lindsey JS, (1997) Modular design of multiporphyrin arrays for studies in photosynthesis and molecular photonicsNATOASI Ser, Ser. C 499(Modular Chemistry):517–528Google Scholar
  63. Logunov SL, Rodgers MAJ, (1992) Self-assembled ion-pair complexes between porphyrins and bipyridinium species: picosecond dynamics of charge recombination J Phys Chem 96(22):8697–8700CrossRefGoogle Scholar
  64. Markvart T, (2000) Light harvesting for quantum solar energy conversion Prog Quantum Electron 24(3–4):107–186CrossRefGoogle Scholar
  65. McClenaghan , ND, Loiseau F, Puntoriero F, Serroni S, Campagna S, (2001) Light-harvesting metal dendrimers appended with additional organic chromophores: a tetranuclear heterometallic first-generation dendrimer exhibiting unusual absorption features Chem Commun (24):2634–2635CrossRefGoogle Scholar
  66. McCusker JK, (2003) Femtosecond absorption spectroscopy of transition metal charge-transfer complexes Acc Chem Res 36(12):876–887PubMedCrossRefGoogle Scholar
  67. McCusker JK, Walda KN, Dunn RC, Simon JD, Magde D, Hendrickson DN, (1993) Subpicosecond 1MLCT. Fwdarw. 5T2 intersystem crossing of low-spin polypyridyl ferrous complexes J Am Chem Soc 115(1):298–307CrossRefGoogle Scholar
  68. Meyer TJ, (1986) Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states Pure Appl Chem 58(9):1193–1206Google Scholar
  69. Meyer TJ, (1989) Chemical approaches to artificial photosynthesis Acc Chem Res 22(5):163–170CrossRefGoogle Scholar
  70. Murtaza Z, Graff DK, Zipp AP, Worl LA, Jones WE, Jr., Bates WD, Meyer TJ, (1994) Energy transfer in the inverted region: calculation of relative rate constants by emission spectral fitting J Phys Chem 98(41):10504–10513CrossRefGoogle Scholar
  71. Nagle JK, Roundhill DM, (1992) Excited state properties and photoinduced catalytic reactions of tris(2,2’-bipyridine)ruthenium(2+) and tetrakis(.mu.-diphosphito)diplatinate(4-): outer-sphere versus inner-sphere photochemistry Chemtracts: Inorg Chem 4(3):141–155Google Scholar
  72. Osawa M, Sonoki H, Hoshino M, Wakatsuki Y. (1998) Synthesis and luminescence properties of Ru2/Cu, Ru2/Ni, and Ru2/Os mixed metal polypyridine complexes bound by 1,3,5-triethynylenebenzeneChem Lett (11):1081–1082CrossRefGoogle Scholar
  73. Peeters E, Ramos AM, Meskers SCJ, Janssen RAJ, (2000) Singlet and triplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers J Chem Phys 112(21):9445–9454CrossRefGoogle Scholar
  74. Pomestchenko IE, Castellano FN, (2004) Solvent switching between charge transfer and intraligand excited states in a multichromophoric platinum(II) complex J Phys Chem A 108(16):3485–3492CrossRefGoogle Scholar
  75. Qu P, Thompson DW, Meyer GJ, (2000) Temperature-dependent electron injection from Ru(II) polypyridyl compounds with low lying ligand field states to titanium dioxide Langmuir 16(10):4662–4671CrossRefGoogle Scholar
  76. Richter MM, Brewer KJ, (1991) Synthesis and characterization of osmium(II) complexes incorporating polypyridyl bridging ligands Inorg Chim Acta 180(1):125–131CrossRefGoogle Scholar
  77. Ryu CK, Schmehl RH, (1989) Solvent and temperature dependence of intramolecular energy transfer in the complex [(dmb)2Ru(b-b)Ru(dmb)(CN)2]2+ J Phys Chem 93(23):7961–7966CrossRefGoogle Scholar
  78. Sauvage JP, Collin JP, Chambron JC, Guillerez S, Coudret C, Balzani V, Barigelletti F, De Cola L, Flamigni L, (1994) Ruthenium(II) and osmium(II) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electrochemical behavior, absorption spectra, and photochemical and photophysical properties Chem Rev 94(4):993–1019CrossRefGoogle Scholar
  79. Scandola F, Indelli MT, (1988) Second sphere donor acceptor interactions in excited states of coordination compounds. Ruthenium(II) bipyridine cyano complexes Pure Appl Chem 60(7):973–980Google Scholar
  80. Schanze KS, Neyhart GA, Meyer TJ, (1986) Excited-state energy and electron transfer in ligand-bridged dimeric complexes of osmium J Phys Chem 90(10):2182–2193CrossRefGoogle Scholar
  81. Schmehl R. (2000) Something new in transition metal complex sensitizers: bringing metal diimine complexes and aromatic hydrocarbons togetherSpectrum (Bowling Green, OH, U. S.) 13(2):17–21Google Scholar
  82. Schmehl RH, Auerbach RA, Wacholtz WF, Elliott CM, Freitag RA, Merkert JW, 1986) Formation and photophysical properties of iron–ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe} Inorg Chem 25(14):2440–2445CrossRefGoogle Scholar
  83. Shaw JR, Schmehl RH, (1991) Photophysical properties of rhenium(I) diimine complexes: observation of room-temperature intraligand phosphorescence J Am Chem Soc 113(2):389–394CrossRefGoogle Scholar
  84. Shaw JR, Webb RT, Schmehl RH, (1990) Intersystem crossing to both ligand-localized and charge-transfer excited states in mononuclear and dinuclear ruthenium(II) diimine complexesJ Am Chem Soc 112(3):1117–1123CrossRefGoogle Scholar
  85. Simon JA, Curry SL, Schmehl RH, Schatz TR, Piotrowiak P, Jin X, Thummel RP, (1997) Intramolecular electronic energy transfer in ruthenium(II) diimine donor/pyrene acceptor complexes linked by a single C–C bond J Am Chem Soc 119(45):11012–11022CrossRefGoogle Scholar
  86. Smilowitz L, Heeger AJ, (1992) Photoinduced absorption from triplet excitations in poly(2-methoxy, 5-(2’-ethyl-hexyloxy)-p-phenylene vinylene) oriented by gel-processing in polyethylene Synth Met 48(2):193–202CrossRefGoogle Scholar
  87. Thompson DW, Wishart JF, Brunschwig BS, Sutin N. (2001) Efficient generation of the ligand field excited state of tris-(2,2’-bipyridine)-ruthenium(II) through sequential two-photon capture by [Ru(bpy)3]2+ or electron capture by [Ru(bpy)3]3+ J Phys Chem A 105(35):8117–8122CrossRefGoogle Scholar
  88. Tomizaki K-Y, Loewe RS, Kirmaier C, Schwartz JK, Retsek JL, Bocian DF, Holten D, Lindsey JS, (2002) Synthesis and photophysical properties of light-harvesting arrays comprised of a porphyrin bearing multiple perylene-monoimide accessory pigments J Org Chem 67(18):6519–6534PubMedCrossRefGoogle Scholar
  89. Turro NJ (1978) Modern Molecular Photochemistry pp 628 Benjamin/Cummings, Menlo Park, CAGoogle Scholar
  90. Tyson DS, Castellano FN, (1999) Light-harvesting arrays with coumarin donors and MLCT acceptors Inorg Chem 38(20):4382–4383PubMedCrossRefGoogle Scholar
  91. Van Diemen JH, Hage R, Haasnoot JG, Lempers HEB, Reedijk J, Vos JG, De Cola L, Barigelletti F, Balzani V. (1992) Electrochemical and photophysical properties of new triazole-bridged heterobimetallic ruthenium–rhodium and ruthenium–iridium complexesInorg Chem 31(17):3518–3522CrossRefGoogle Scholar
  92. Van Houten J, Watts RJ, (1976) Temperature dependence of the photophysical and photochemical properties of the tris(2,2’-bipyridyl)ruthenium(II) ion in aqueous solution J Am Chem Soc 98(16):4853–4858CrossRefGoogle Scholar
  93. Van Houten J, Watts RJ, (1978) Photochemistry of tris(2,2’-bipyridyl)ruthenium(II) in aqueous solutionsInorg Chem 17(12):3381–3385CrossRefGoogle Scholar
  94. Van Wallendael S, Rillema DP, (1991) Photoinduced intramolecular energy transfer from one metal center to the other in a mixed-metal ruthenium/rhenium complexCoord Chem Revs 111: 297–318CrossRefGoogle Scholar
  95. Vlcek A, Jr. (1998) Femtosecond dynamics of excited-state evolution in [Ru(bpy)3]2+Chemtracts 11(8):621–625Google Scholar
  96. Voegtle F, Frank M, Nieger M, Belser P, von Zelewsky A, Balzani V, Barigelletti F, De Cola L, Flamigni L. (1993) Rigid, rod-like metal complexes with nanometer dimensions: synthesis, luminescence, and long-range energy transferAngew Chem 105(11):1706–1706 (See also Angew Chem, Int Ed Engl, 1993, 32(11), 1643–1646)CrossRefGoogle Scholar
  97. Vogler LM, Jones SW, Jensen GE, Brewer RG, Brewer KJ, (1996) Comparing the spectroscopic and electrochemical properties of ruthenium and osmium complexes of the tridentate polyazine ligands 2,2’:6’,2’’-terpyridine and 2,3,5,6-tetrakis(2-pyridyl)pyrazine Inorg Chim Acta 250(1–2):155–162CrossRefGoogle Scholar
  98. Wacholtz WF, Auerbach RA, Schmehl RH, (1987) Preparation, characterization, and photophysical properties of covalently linked binuclear and tetranuclear ruthenium bipyridyl complexes Inorg Chem 26(18):2989–2994CrossRefGoogle Scholar
  99. Wacholtz WM, Auerbach RA, Schmehl RH, Ollino M, Cherry WR, (1985) Correlation of ligand field excited-state energies with ligand field strength in (polypyridine)ruthenium(II) complexes Inorg Chem 24(12):1758–1760CrossRefGoogle Scholar
  100. Wang B, Wasielewski MR, (1997) Design and synthesis of metal ion-recognition-induced conjugated polymers: an approach to metal ion sensory materials J Am Chem Soc 119(1):12–21CrossRefGoogle Scholar
  101. Wang XY (2004) Oligo(phenylene-vinylene) terpyridine Ligands and Their Ru(II), Pt(II), and Zn(II) Complex Systems. Dissertation, pp. 183, Tulane University, New Orleans, LAGoogle Scholar
  102. Wang XY, DelGuerzo A, Schmehl RH, (2004a) Photophysical behavior of transition metal complexes having interacting ligand localized and metal-to-ligand charge transfer states J Photochem Photobiol C 5(1):55–77CrossRefGoogle Scholar
  103. WangX-Y, del Guerzo A, Tunuguntla H and Schmehl RH (2004b) Photophysical behavior of Ru(II) and Os(II) terpyridyl phenylene vinylene complexes: perturbation of MLCT state by intraligand charge transfer state. Res. Chem. Intermed. in pressGoogle Scholar
  104. Whittle CE, Weinstein JA, George MW, Schanze KS, (2001) Photophysics of diimine platinum(II) bis-acetylide complexes Inorg Chem 40(16):4053–4062PubMedCrossRefGoogle Scholar
  105. Winkler JR, Sutin N. (1987) Lifetimes and spectra of the excited states of cis-dicyanobis(2,2’-bipyridine)iron(II) and -ruthenium(II) in solution Inorg Chem 26(2):220–221CrossRefGoogle Scholar
  106. Xu D, Zhang JZ, Hong B. (2001) Investigation of electron delocalization and ultrafast studies of RuII/OsII dyads with ethynyl/butadiynyl-bridged polyphosphines J Phys Chem A 105(34):7979–7988CrossRefGoogle Scholar
  107. Yeh AT, Shank CV, McCusker JK, (2000) Ultrafast electron localization dynamics following photo-induced charge transfer Science 289(5481):935–938PubMedCrossRefGoogle Scholar
  108. Yeh AT, Shank CV, McCusker JK, (2001) Ultrafast solvent-induced charge localization in tris-(2,2’-bipyridine) ruthenium(II) Springer Ser Chem Phys 66:494–496Google Scholar
  109. Yersin H, Kratzer C. (2002) Energy transfer and harvesting in [Ru1-xOsx(bpy)3](PF6)2 and {L-[Ru(bpy)3]D-[Os(bpy)3]}(PF6)4 Coord Chem Revs 229(1–2):75–93CrossRefGoogle Scholar
  110. Yu L, Muthukumaran K, Boyle PD, Lindsey JS, Sazanovich IV, Kirmaier C, Hindin E, Holten D, Diers JR, Bocian DF, (2003) Excited-state energy-transfer dynamics in self-assembled triads composed of two porphyrins and an intervening bis(dipyrrinato)metal complexInorg Chem 42(21):6629–6647PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Xian-yong Wang
    • 1
  • Andre Del Guerzo
    • 2
  • Sujoy Baitalik
    • 3
  • Gerald Simon
    • 4
  • George B. Shaw
    • 5
  • Lin X. Chen
    • 5
  • Russell Schmehl
    • 6
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Laboratoire de Chimie Organique et OrganométalliqueUniversité Bordeaux ITalence cédexFrance
  3. 3.Scottish UniversityKolkataIndia
  4. 4.Department of ChemistryFrostburg State UniversityFrostburgUSA
  5. 5.Chemistry DivisionArgonne National LaboratoriesArgonneUSA
  6. 6.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations