Photosynthesis Research

, Volume 87, Issue 1, pp 133–150 | Cite as

Light Harvesting Dendrimers

  • Arpornrat Nantalaksakul
  • D. Raghunath Reddy
  • Christopher J. Bardeen
  • S. Thayumanavan


Tree-like dendrimers with decreasing number of chromophores from periphery to core is an attractive candidate for light-harvesting applications. Numerous dendritic designs with different kinds of light-collecting chromophores at periphery and an energy-sink at the core have been demonstrated with high energy transfer efficiency. These building blocks are now being developed for several applications such as light-emitting diodes, frequency converters and other photonic devices. This review outlines the efforts that are based on both conjugated and non-conjugated dendrimers.


dendrimers electron transfer energy shuttling energy transfer light-harvesting site-isolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adronov A and Fréchet MJ (2000) Light-harvesting dendrimers. Chem Commun 1701–1710Google Scholar
  2. A Adronov, SL Gilat, JMJ Fréchet, L Ohta, FVR Neuwahl and GR Fleming, Light harvesting and energy transfer in laser-dye-labeled poly(aryl ether) dendrimers. J Am Chem Soc 122 (2000) 1175-1185CrossRefGoogle Scholar
  3. V Balzani, A Credi and M Venturi, Photoprocesses. Curr Opin Chem biol 1 (1997) 506-513PubMedCrossRefGoogle Scholar
  4. V Balzani, S Campagna, G Dendri, A Juris, S Serroni and M Venuri, Designing dendrimers based on transition metal complexes. Light-harvesting properties and predetermined redox patterns. Acc Chem Res 31 (1998) 26-34CrossRefGoogle Scholar
  5. V Balzani, P Ceroni, S Gestermann, M Gorka, C Kauffmann and F Vögtle, Fluorescent guests hosted in fluorescent dendrimers. Tetrahedron 58 (2002) 629-637CrossRefGoogle Scholar
  6. V Balzani, P Ceroni, M Maestri and V Vicinelli, Light-harvesting dendrimers. Curr Opin Chem biol 7 (2003a) 657-665CrossRefGoogle Scholar
  7. V Balzani, A Credi and M Venturi, Photoinduced charge separation and solar energy conversion. Molecular Devices and Machines: a Journey to Nanoworld. Weinheim, Germany: Wiley-VCH (2003b).Google Scholar
  8. A Bar-Haim and J Klafter, Geometric versus energetic competition in light harvesting by dendrimers. J Phys Chem B 102 (1998a) 1662-1664CrossRefGoogle Scholar
  9. A Bar-Haim and J Klafter, Dendrimers as Light-harvesting Antannae. Journal of Luminescence 76 (1998b) 197-200CrossRefGoogle Scholar
  10. A Bar-Haim, J Klafter and R Kopaelman, Dendrimers as controlled artificial energy antennae. J Am Chem Soc 119 (1997) 6197-6198CrossRefGoogle Scholar
  11. J Barber and B Andersson, Revealing the blueprint of photosynthesis. Nature 370 (1994) 31-34CrossRefGoogle Scholar
  12. M Braun, S Atalick, DM Guldi, H Lanig, M Brettreich, S Burghardt, M Hatzimarinaki, E Ravanelli, M Prato, R Eldik van and A Hirsch, Electrostatic complexation and photoinduced electron transfer between Zn-cytochromo c and polyanionic fullerene dendrimers. Chem Eur J 9 (2003) 3867-3875CrossRefGoogle Scholar
  13. K Bronk and S Thayumanavan, Design and synthesis of nonconjugated monodendrons with triarylamine repeating units. Org Lett 3 (2001) 2057-2060PubMedCrossRefGoogle Scholar
  14. K Bronk and S Thayumanavan, Synthesis of nonconjugated dendrons with a redox gradient. J Org Chem 68 (2003) 5559-5567PubMedCrossRefGoogle Scholar
  15. M Choi, T Aida, T Yamazaki and I Yamazaki, A large dendritic multiporphyrin array as a mimic of the bacterial light-harvesting antenna complex: molecular design of an efficient energy funnel for visible photons. Angew Chem Int Ed 40 (2001) 3194-3198CrossRefGoogle Scholar
  16. M Cotlet, S Masuo, M Lor, E Fron, M Auweraer Van der, K Müllen, J Hofkens and FC Schryver De, Probing the influence of O2 on photoinduced reversible electron transfer in perylenediimide– triphenylamine-based dendrimers by single-molecule spectroscopy. Angew Chem Int Ed 43 (2004a) 6116-6120CrossRefGoogle Scholar
  17. M Cotlet, S Masuo, G Luo, J Hofkens, M Auweraer Van der, J Verhoeven, K Müllen, XS Xie and FC Schryver De, Probing Conformational dynamics in Single donor-acceptor Synthetic molecules by means of photoinduced reversible electron transfer. Proc Natl Acad Sci U.S.A 101 (2004b) 14343-14348CrossRefGoogle Scholar
  18. J Deisenhofer and H Michel, The photosynthetic reaction center from the purple bacterium rhodopseudomonas virus. Science 245 (1989) 1463-1473PubMedCrossRefGoogle Scholar
  19. J Deisenhofer, O Epp, K Miki, R Huber and H Michel, Structure of protein subunits in The photosynthetic reaction center of rhodopseudomonas-viridis at 3A resolution. Nature 318 (1985) 618-624CrossRefGoogle Scholar
  20. C Devadoss, P Bharathi and JS Moore, Energy transfer in dendritic macromolecules: molecular size effects and the role of an energy gradient. J Am Chem Soc 118 (1996) 9635-9644CrossRefGoogle Scholar
  21. MA Fox, Polymeric and supramolecular arrays for directional energy and electron-transport over macroscopic distances. Acc Chem Res 25 (1992) 569-574CrossRefGoogle Scholar
  22. AW Freeman, SC Koene, PRL Malenfant, ME Thompson and JMJ Fréchet, Dendrimer-containing light-emitting diodes: toward site-isolation of chromophores. J Am Chem Soc 122 (2000) 12385-12386CrossRefGoogle Scholar
  23. P Furuta, J Brooks, ME Thompson and JMJ Fréchet, Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. J Am Chem Soc 125 (2003) 13165-13172PubMedCrossRefGoogle Scholar
  24. KM Gaab, AL Thompson, J Xu, TJ Martinez and CJ Bardeen, Meta-conjugation and excited-state coupling in phynylacetylene dendrimers. J Am Chem Soc 125 (2003) 9288-9289PubMedCrossRefGoogle Scholar
  25. TH Ghaddar, JF Wishard, DW Thompson, JK Whitesell and MA Fox, A Dendrimer-Based electron antenna: paired electron-transfer reactions in dendrimers with a 4,4′-bipyridine core and naphthalene peripheral groups. J Am Chem Soc 124 (2002) 8285-8289PubMedCrossRefGoogle Scholar
  26. SL Gilat, A Adronov and MJ Fréchet, Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew Chem Int Ed 38 (1999) 1422-1427CrossRefGoogle Scholar
  27. R Gronheid, J Hofkens, F Kohn, T Weil, E Reuther, K Müllen and FC Schryer De, Intramolecular foster energy transfer in dendritic system at the single molecule level. J Am Chem Soc 124 (2002) 2418-2419PubMedCrossRefGoogle Scholar
  28. DM Guldi, A Swartz, C Luo, R Gomez, JL Segura and N Martin, Rigid dendritic donor-acceptor ensembles: control over energy and electron transduction. J Am Chem Soc 124 (2002) 10875-10886PubMedCrossRefGoogle Scholar
  29. D Gust, TA Moore and AL Moore, Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26 (1993) 198-205CrossRefGoogle Scholar
  30. D Gust, TA Moore and AL Moore, Mimicking photosynthetic solar energy transduction. Acc Chem Res 34 (2001) 40-48PubMedCrossRefGoogle Scholar
  31. X Hu, A Damjanovic, T Ritz and K Schulten, Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci U.S.A 95 (1998) 5935-5941PubMedCrossRefGoogle Scholar
  32. DL Jiang, CK Choi, L Honda, WS Li, T Yuzawa and T Aida, Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes. J Am Chem Soc 126 (2004) 12084-12089PubMedCrossRefGoogle Scholar
  33. DL Jiang and T Aida, Morphology-dependent photochemical events in aryl ether dendrimer porphyrins: cooperation of dendron subunits for singlet energy transduction. J Am Chem Soc 120 (1998) 10895-10901CrossRefGoogle Scholar
  34. M Kawa and JMJ Fréchet, Self-assembled lanthanide-cored dendrimer complexes: enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem Mater 10 (1998) 286-296CrossRefGoogle Scholar
  35. AL Lehninger, DL Nelson and MM. Cox, Principles of biochemistry. NewYork: Worth Publishers Inc (1993).Google Scholar
  36. D Liu, S Feyter De, M Cotlet, A Stefan, U-M Wiesler, A Herrmann, D Grebel-Koehler, J Qu, K Müllen and FC Schryver De, Fluorescence and intramolecular energy transfer in polyphenylene dendrimers. Macromolecules 36 (2003) 5918-5925CrossRefGoogle Scholar
  37. M Maus, R De, M Lor, T Weil, S Mitra, U-M Wiesler, A Herrmann, J Hofkens, T Vosch, K Müllen and FC De Schryer, Intramolecular energy hopping and energy trapping in polyphenylene dendrimers with multiple peryleneimide. J Am Chem Soc 123 (2001) 7668-7676PubMedCrossRefGoogle Scholar
  38. G McDermott, SM Prince, AA Freer, AM Hawthrornthwaite-Lawless, MZ Papiz, RJ Cogdell and NW Isaacs, Crystal-Structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374 (1995) 517-521CrossRefGoogle Scholar
  39. JS Melinger, Y Pan, VD Kleiman, Z Peng, BL Davis, D McMorrow and M Lu, Optical and photophysical properties of light-harvesting phenylacetylene monodendrons based on unsymmetrical branching. J Am Chem Soc 124 (2002) 12002-12012PubMedCrossRefGoogle Scholar
  40. Z Peng, Y Pan, B Xu and J Zhang, Synthesis and optical properties of novel unsymmetrical conjugated dendrimers. J Am Chem Soc 122 (2000) 6619-6623CrossRefGoogle Scholar
  41. Peng Z, Mellinger JS and Kleiman VD (2005) Personal CommunicationGoogle Scholar
  42. J Qu, D Liu, S Feyter De, J Zhang, FC Schryver De and K Müllen, Synthesis and optical properties of polyphenylene dendrimers based on perylenes. J Org Chem 68 (2003) 9802-9808PubMedCrossRefGoogle Scholar
  43. J Qu, NG Pschirer, D Liu, A Stefan, FC Schryver De and K Müllen, Dendronized perylenetetracarboxdiimides with peripheral triphenylamines for intramolecular energy and electron transfer. Chem Eur J 10 (2004) 528-537CrossRefGoogle Scholar
  44. R Sadamoto, N Tomioka and T Aida, Photoinduced electron transfer reactions through dendrimer architecture. J Am Chem Soc 118 (1996) 3978-3979CrossRefGoogle Scholar
  45. Serin JM, Brousmiche W and Fréchet MT (2002) Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem Commun: 2605–2607Google Scholar
  46. MR Shorteed, SF Swallen, Z-Y Shi, W Tan, Z Xu, C Devadoss, JS Moore and R Kopelman, Directed energy transfer in dendrimeric antenna supermolecules. J Phys Chem B 101 (1997) 6318-6322CrossRefGoogle Scholar
  47. GM Stewart and MA Fox, Chromophore-Labeled dendrons as light harvesting antennae. J Am Chem Soc 118 (1996) 4354-4360CrossRefGoogle Scholar
  48. KR Thomas, AL Thompson, AV Sivakumar, CJ Bardeen and S Thayumanavan, Energy and electron transfer in bifunctional non-conjugated dendrimers. J Am Chem Soc 127 (2005) 373-383CrossRefGoogle Scholar
  49. AL Thompson, KM Gaab, J Xu, CJ Bardeen and TJ Martinez, Variable Electronic Coupling in Phenylacetylene Dendrimers: The Role of Förster, Dexter and Charge-Transfer Interaction. J Phys Chem A 108 (2004) 671-682CrossRefGoogle Scholar
  50. Unpublished results from our laboratoriesGoogle Scholar
  51. MR Wasielewski, Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem Rev 92 (1992) 435-461CrossRefGoogle Scholar
  52. SE Webber, Photon harvesting polymers. Chem Rev 90 (1990) 1469-1482CrossRefGoogle Scholar
  53. T Weil, E Reuther and K Müllen, Shape-Persistent, fluorescent polyphenylene dyads and a triad for efficient vectorial transduction of excitation energy. Angew Chem Int Ed 41 (2002) 1900-1904CrossRefGoogle Scholar
  54. T Weil, E Reuther, C Beer and K Müllen, Synthesis and characterization of dendritic multichromophores base on rylene dyes for vectorial transduction of excitation energy. Chem Eur J 10 (2004) 1398-1414CrossRefGoogle Scholar
  55. Z Xu and JS Moore, Rapid construction of large-size phenylacetylene dendrimers up to 12.5 nanometers in molecular diameter. Angew Chem Int Ed 32 (1993) 1354-1357CrossRefGoogle Scholar
  56. Xu, Design and synthesis of a convergent and directional molecular antenna. Acta Polym 45 (1994) 83-87CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Arpornrat Nantalaksakul
    • 1
  • D. Raghunath Reddy
    • 1
  • Christopher J. Bardeen
    • 2
  • S. Thayumanavan
    • 1
  1. 1.Department of ChemistryUniversity of MassachusettsAmherstUSA
  2. 2.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations