Skip to main content
Log in

Sulfite oxidation in plant peroxisomes

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

For a long time, occurrence and nature of sulfite oxidase activity in higher plants were controversially discussed. During primary sulfate assimilation in the chloroplast, sulfate is reduced via sulfite to organic sulfide, which is essential for cysteine biosynthesis. However, it has also been reported that sulfite can be oxidized back to sulfate, e.g. when plants were subjected to SO2 gas. Recently, work from our laboratory has identified the sulfite oxidase as the fourth member of molybdenum-enzymes in plants. Here we discuss how nature separates the two counteracting pathways – sulfate assimilation and sulfite detoxification – into two different cell organelles and we will also discuss how these two processes are coregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GFP:

green fluorescent protein

Moco:

Molybdenum cofactor

PTS:

peroxisomal ZZtargeting sequence

SO:

sulfite oxidase

References

  • J-N Bick, F Åslund, Y Chen and T Leustek, Glutaredoxin function for the carboxyl-terminal domain of the plant-type 5'-adenylylsulfate reductase. Proc Natl Acad Sci USA 95 (1998) 8404-8409

    Article  PubMed  CAS  Google Scholar 

  • BB Buchanan, W Gruissem and JL Russell, Biochemistry & Molecular Biology of Plants. Rockville, Maryland: American Society of Plant Physiologists (2000).

    Google Scholar 

  • P Buchner, CEE Stuiver, S Westerman, M Wirtz, R Hell, MJ Hawkesford and LJ Kok De, Regulation of Sulfate Uptake and Expression of Sulfate Transporter Genes in Brassica oleracea as Affected by Atmospheric H2S and Pedospheric Sulfate Nutrition. Plant Physiol 136 (2004) 3396-3408

    Article  PubMed  CAS  Google Scholar 

  • HJ Cohen, S Betcher-Lange, DL Kessler and KV Rajagopalan, Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247 (1972) 7759-7766

    PubMed  CAS  Google Scholar 

  • APM Dittrich, H Pfanz and U Heber, Oxidation and reduction of sulfite by chloroplasts and formation of sulfite addition compounds. Plant Physiol 177 (1992) 255-286

    Google Scholar 

  • M Droux, Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynthesis Res 79 (2004) 331-348

    Article  CAS  Google Scholar 

  • T Eilers, G Schwarz, H Brinkmann, C Witt, T Richter, J Nieder, B Koch, R Hille, R Hänsch and RR Mendel, Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase: a new player in plant sulfur metabolism. J Bio Chem 276 (2001) 46989-46994

    Article  CAS  Google Scholar 

  • RM Garrett, JL Johnson, TN Graf, A Feigenbaum and KV Rajagopalan, Human sulfite oxidase R 160 Q: identification of the mutation in a sulfite-oxidase deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci USA 95 (1998) 6394-6398

    Article  PubMed  CAS  Google Scholar 

  • SG Garsed and DJ Read, Sulphur dioxide metabolism in soy-bean, Glycine max var. Biloxi. I. The effects of light and dark on the uptake and translocation of 35SO2. New Phytol 78 (1977) 111-119

    Article  CAS  Google Scholar 

  • M Hayashi, M Aoki, A Kato, M Kondo and M Nishimura, Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J 10 (1996) 225-234

    Article  PubMed  CAS  Google Scholar 

  • U Heber and K Hüve, Action of SO2 on plants and metabolic detoxification of SO2. Int Rev Cytochem 177 (1998) 255-286

    Article  CAS  Google Scholar 

  • U Heber, A Laisk, H Pfanz and OL Lange, Wann ist SO2 Nährstoff und wann Schadstoff? Ein Betrag zum Waldschadensproblem. AFZ 27/28/29 (1987) 700-705

    Google Scholar 

  • R Hell, Molecular physiology of plant sulfur metabolism. Planta 202 (1997) 138-148

    Article  PubMed  CAS  Google Scholar 

  • C Herschbach and H Rennenberg, Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Progr Bot 62 (2001) 177-192

    CAS  Google Scholar 

  • TL Johnson and LJ Olsen, Update on Peroxisomes – Building New Models for Peroxisome Biogenesis. Plant Physiol 127 (2001) 731-739

    Article  PubMed  CAS  Google Scholar 

  • P Jolivet, E Bergeron, A Zimierski and JC Meunier, Metabolism of elemental sulfur and oxidation of sulfite by wheat and spinach chloroplasts. Phytochemistry 38 (1995a) 9-14

    Article  CAS  Google Scholar 

  • P Jolivet, E Bergeron and JC Meunier, Evidence for sulfite oxidase activity in spinach leaves. Phytochemistry 40 (1995b) 667-672

    Article  CAS  Google Scholar 

  • G Kaiser, E Martinoia, G Schroppelmeier and U Heber, Active-transport of sulfate into the vacuole of plant cells provides halotolerance and can detoxify SO2. J Plant Physiol 133 (1989) 756-763

    CAS  Google Scholar 

  • U Kappler and C Dahl, Enzymology and molecular biology of prokaryotic sulfite oxidation (minireview). FEMS Microbiol Lett 203 (2001) 1-9

    Article  PubMed  CAS  Google Scholar 

  • T Kataoka, A Watanabe-Takahashi, N Hayashi, M Ohnishi, T Mimura, P Buchner, MJ Hawkesford, T Yamaya and H Takahashia, Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16 (2004) 2693-2704

    Article  PubMed  CAS  Google Scholar 

  • S Kopriva and A Koprivova, Plant adenosine 5'-phosphosulphate reductase: the past, the present, and the future. J Exp Bot 55 (2004) 1775-1783

    Article  PubMed  CAS  Google Scholar 

  • Leustek T (2002) Sulfate metabolism. In: Somerville CR and EM Meyerowitz (eds) The Arabidopsis Book. American Society of Plant Biologists, Rockville

  • T Leustek and K Saito, Sulfate transport and assimilation in plants. Plant Physiol 120 (1999) 637-644

    Article  PubMed  CAS  Google Scholar 

  • Linzon SN (1978) Effects of airbone sulfur pollutants on plants. In: Nriagu JO (ed) Sulfur in the Environment Part II. Ecological Impacts, pp 109–162. Wiley, New York

  • E Lopez-Huertas, FJ Corpas, LM Sandalio and LA Rio Del, Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem J 337 (1999) 531-536

    Article  PubMed  CAS  Google Scholar 

  • Z Miszalski and H Ziegler, Superoxide dismutase and sulfite oxidation. Z Naturforsch 47c (1992) 360-364

    Google Scholar 

  • RT Mullen, MS Lee, R Flynn and RN Trelease, Diverse amino acid residues function within the type 1 peroxisomal targeting signal. Plant Physiol 115 (1997) 881-889

    Article  PubMed  CAS  Google Scholar 

  • T Nakamura, C Meyer and H Sano, Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family. J Exp Bot 53 (2002) 1833-1836

    Article  PubMed  Google Scholar 

  • K Nowak, N Luniak, C Witt, Y Wüstefeld, A Wachter, R-R Mendel and R Hänsch, Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45 (2004) 1889-1894

    Article  PubMed  CAS  Google Scholar 

  • G Peiser and SF Yang, Biochemical and physiological effects of SO2 on nonphotosynthetic processes in plants. In: WE Winner, HA Mooney and RA Goldstein (eds.) Sulfur Dioxide and Vegetation. Stanford, California: Stanford University Press (1985) pp. 148-161

    Google Scholar 

  • Pfanz H, Dietz K-J, Weinerth I and Oppmann B (1990) Detoxification of sulfur dioxide by apoplastic peroxidases. In: Rennenberg H, Brunold C, De Kok LJ and Stulen I (eds) Sulfur Nutrition and Sulfur Assimilation in Higher Plants, pp 229--233. SPB Academic Publishing

  • H Pfanz and B Oppmann, The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. In: J Lobarzewski, H Greppin, C Penel and T Gaspar (eds.) Biochemical, Molecular and Physiological Aspects of Plant Peroxidases. Geneva: University of Geneva (1991) pp. 401-417

    Google Scholar 

  • H Rennenberg, The fate of excess sulfur in higher plants. Ann Rev Plant Physiol 35 (1984) 121-153

    CAS  Google Scholar 

  • H Rennenberg, J Sekiya, LG Wilson and P Filner, Evidence for an intracellular sulfur cycle in cucumber leaves. Planta 154 (1982) 516-524

    Article  CAS  Google Scholar 

  • H Rennenberg and C Herschbach, Responses of plants to atmospheric sulphur. In: M Yunus and M Iqbal (eds.) Plant Response to Air Pollution. Chichester: John Wiley and Sons (1996) pp. 285-294

    Google Scholar 

  • H Rennenberg and A Polle, Metabolic consequences of atmospheric sulphur influx into plants. In: R Alscher and A Wellburn (eds.) Plant Responses to the Gaseous Environment. London: Chapman & Hall (1994) pp. 165-181

    Google Scholar 

  • S Reumann, E Maier, HW Heldt and R Benz, Permeability properties of the porin of spinach leaf peroxisomes Eur. J Biochem. 251 (1998) 359-66

    CAS  Google Scholar 

  • K Saito, Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol 136 (2004) 2443-2450

    Article  PubMed  CAS  Google Scholar 

  • K Tanaka, T Otsubo and N Kondo, Participation of hydrogen peroxide in the inactivation of Calvin cycle SH enzymes in SO2-fumigated spinach leaves. Plant Cell Physiol 23 (1982) 1009-1018

    CAS  Google Scholar 

  • MD Thomas, RH Hendrikcks and Hill, Some chemical reactions of sulfur dioxide after absorption by alfalfa and sugar beets. Plant Physiol 19 (1944) 212-216

    PubMed  CAS  Google Scholar 

  • TAW Kooij Van der, LJ Kok de, S Haneklaus and E Schnug, Uptake and metabolism of sulphur dioxide by Arabidopsis thaliana. N Phytol 135 (1997) 101-107

    Article  Google Scholar 

  • S Veljović-Jovanović, T Oniki and U Takahama, Detection of monodehydro ascorbic acid radical in sulfite-treated leaves and mechanism of its formation. Plant Cell Physiol 39 (1998) 1203-1208

    Google Scholar 

  • M Würfel, I Häberlein and H Follmann, Inactivation of thioredoxin by sulfite ions. FEBS Lett 268 (1990) 146-148

    Article  PubMed  Google Scholar 

  • B Yu, C Xu and C Benning, Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99 (20025) 5732-5737

    Article  CAS  Google Scholar 

  • I Ziegler, Action of sulphite on plant malate dehydrogenase. Phytochemistry 13 (1974) 2411-2416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf R. Mendel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänsch, R., Mendel, R.R. Sulfite oxidation in plant peroxisomes. Photosynth Res 86, 337–343 (2005). https://doi.org/10.1007/s11120-005-5221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-005-5221-x

Keywords

Navigation