Photosynthesis Research

, Volume 85, Issue 2, pp 247–250 | Cite as

The discovery of the nature of ferredoxin in photosystems: A recollection

Letter to the editor


I describe here my recollection of the story of the discovery of the nature of ferredoxin in photosystems that began in 1965: this story involved the EPR measurements by a young physicist J.H.M. Thornley, using samples provided by J.F. Gibson and D. Hall, and in collaboration with F.R. Whatley.


EPR ferredoxin J. Owen J.F. (John) Gibson D.O. (David) Hall J.H.M. (John) Thornley F.R. (Bob) Whatley R.J.P. (Bob) Williams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, DI 1988The discovery of ferredoxin: the photosynthetic pathTIBS133033PubMedGoogle Scholar
  2. Beinert, H 2002Spectroscopy of succinate dhydrogenases, a historical perspectiveBiochim Biophys Acta1553732PubMedGoogle Scholar
  3. Beinert, H, Sands, RH 1960Studies on succinic and DPNH dehydrogenase preparations by paramagnetic resonance (EPR) spectroscopyBiochem Biophys Res Commun34146CrossRefGoogle Scholar
  4. Beinert, H, Heinen, W, Palmer, G 1962Applications of combined low temperature optical and electron paramagnetic resonance spectroscopy to the study of oxidative enzymesEnzyme Models Enzyme Struct Brookhaven Symp Biol15229265Google Scholar
  5. Buchanan, BB, Schürmann, P, Wolosiuk, RA, Jacquot, J-P 2002The ferredoxin/thioredoxin system: from discovery to molecular structures and beyondPhotosynth Res73215222CrossRefGoogle Scholar
  6. Gest, H, Blankenship, R 2004Timer line of discoveries: anoxygenic bacterial photosynthesisPhotosynth Res805970CrossRefGoogle Scholar
  7. Gibson, JF, Hall, DO, Thornley, JHM, Whatley, FR 1966The iron complexes in spinach ferredoxinProc Natl Acad Sci USA56987990PubMedGoogle Scholar
  8. Govindjee, , Krogmann, D 2004Discoveries in oxygenic photosynthesis (1727–2003): a perspectivePhotosynth Res801557CrossRefGoogle Scholar
  9. Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics, Volume 10. In: Govindjee (ed) Advances in Photosynthesis and Respiration. Kluwer Academic Publishers, Dordrecht, The Netherlands Google Scholar
  10. Lovenberg W (1974). Ferredoxin and rubredoxin. In: Neilands JB (ed) Microbial Iron Metabolism, pp 161–185. Academic Press, Iron New YorkGoogle Scholar
  11. Owen, J, Coles, BA, Orton, JW 1960Antiferromagnetic exchange interaction between Mn2+ ions in MgOPhys Rev Lett4116120CrossRefGoogle Scholar
  12. Shin, M 2004How is ferredoxin-NADP reductase involved in the NADP photoreduction of chloroplasts?Photosynth Res80307313CrossRefGoogle Scholar
  13. Thornley, JHM 1962Paramagnetic resonance particularly of coupled systems. DPhil thesisOxford UniversityOxford, UKGoogle Scholar
  14. Thornley, JHM, France, J 2005Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences. CAB International, Wallingford, Oxford UK (in press)Google Scholar
  15. Thornley, JHM, Johnson, JR 1990Plant and Crop ModellingOxford University PressOxford, UK(reprint edition 2000)Google Scholar
  16. Thornley, JHM, Owen, J 1966Covalent bonding and magnetic properties of transition metal ionsReports Progress PhysicsPart II 675693Google Scholar
  17. Thornley, JHM, Gibson, JF, Whatley, FR, Hall, DO 1966Comment on a recent model of the iron complex in spinach ferredoxinBiochem Biophys Res Commun24877879CrossRefPubMedGoogle Scholar
  18. Tsukihara, T, Fukuyama, K, Nakamura, M, Katsube, M, Tanaka, N, Kakudo, M, Wada, K, Hase, T, Matsubara, H 1981X-ray analysis of a 2Fe–2S ferredoxin from Spirulina platensis. Main chain fold and location of side chains at 2.5 AngstromJ Biochem Japan9017631773Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Inorganic Chemistry LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations