Photosynthesis Research

, Volume 86, Issue 1–2, pp 71–80 | Cite as

Effects of Carotenoid Inhibition on the Photosynthetic RC–LH1 Complex in Purple Sulphur Bacterium Thiorhodospira sibirica

  • A.A. Moskalenko
  • Z.K. Makhneva
  • L. Fiedor
  • H. Scheer
Regular Paper


Core complexes (LH1–RC) were isolated using preparative gel electrophoresis from photosynthetic membranes of the purple bacterium, Thiorhodospira sibirica, grown in the absence or presence of the carotenoid biosynthesis inhibitor, diphenylamine. The biosynthesis of carotenoids is affected by diphenylamine both quantitavely and qualitatively: after inhibition, the level of carotenoids in core complexes reaches only 10% of the normal content, as analyzed by HPLC and absorption spectroscopy. The normally grown bacterium biosynthesizes spirilloxanthin, rhodopin, anhydrorhodovibrin and lycopene, whereas after inhibition only neurosporene, ζ-carotene and their derivatives are found in the complexes. There is no concomitant accumulation of appreciable amounts of colorless carotenoid precursors. Interestingly, the main absorption band of the core light harvesting complex isolated from carotenoid-inhibited cells, shows a red shift to 889 nm, instead of a blue shift observed in many carotenoid-deficient species of purple photosynthetic bacteria.

The stability of isolated core complexes against n-octyl-β-D-glucopyranoside clearly depends on the presence of carotenoids. Subcomplexes resulting from the detergent treatment, were characterized by non-denaturating gel electrophoresis combined with in situ absorption spectroscopy. Core complexes with the native carotenoid complement dissociate into three subcomplexes: (a) LH1 complexes partially depleted of carotenoids, with an unusual spectrum in the NIR region (λmax = 791, 818, 847 and 875 nm), (b) reaction centers associated with fragments of LH1, (c) small amounts of a carotenoidless B820 subcomplex. The core complex from the carotenoid-deficient bacterium is much less stable and yields only the two sub-complexes (b) and (c). We conclude that carotenoids contribute critically to stability and interactions of the core complexes with detergents.


B820 subunits carotenoid inhibition core complex electrophoresis LH1 antenna 











complex isolated from the DPA-grown cell






high performance liquid chromatography


lithium dodecyl sulfate


light harvesting


fragment of LH1 complex


near infrared




polyacrylamide gel electrophoresis




reaction center






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agalidis, I, Mattioli, T, Reiss-Husson, F 1999Spirilloxanthin is released by detergent from Rubrivivax gelatinosus reaction center as an aggregate with unusual spectral propertiesPhotosynth Res.623142CrossRefGoogle Scholar
  2. Bandilla, M, Ücker, B, Ram, M, Simonin, I, Gelhaye, E, McDermott, G, Cogdell, RJ, Scheer, H 1998Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800–850 of Rhodobacter sphaeroides 2.4.1 with BChl a and modified (bacterio-)chlorophyllsBiochim Biophys Acta.1364390402PubMedGoogle Scholar
  3. Bramley, PM 1993Inhibition of carotenoid biosynthesisA, YoungG, Britton eds. Carotenoids in PhotosynthesisChapmann & HallLondon127159Google Scholar
  4. Britton, G, Liaaen-Jensen, S, Pfander, H 2004Carotenoids. HandbookBirkhäuser VerlagBaselGoogle Scholar
  5. Bryantseva, I, Gorlenko, VM, Kompantseva, EI, Imhoff, JF, Suling, J, Mityushina, L 1999Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lakeInt J Syst Bacteriol49697703PubMedGoogle Scholar
  6. Chang, MC, Meyer, L, Loach, PA 1990Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobacter sphaeroides 2.4.1 and puc705-BAPhotochem Photobiol52873881PubMedGoogle Scholar
  7. Cogdell, RJ, Frank, H 1987How carotenoids function in photosynthetic bacteriaBiochim Biophys Acta8956379PubMedGoogle Scholar
  8. Davidson, E, Cogdell, RJ 1981The polypeptide composition of the B850 light-harvesting pigment-protein complex from Rhodopseudomonas sphaeroides, R26.1FEBS Lett1328184CrossRefGoogle Scholar
  9. Davies BH, Köst H-P, (1988). CRC Handbook of Chromatography. In CRC Series in Chromatography. CRC Press, Boca RatonGoogle Scholar
  10. Davis, CM, Bustamante, PL, Loach, PA 1995Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α- and β-polypeptides, bacteriochlorophyll a, and carotenoidJ Biol Chem27057935804CrossRefPubMedGoogle Scholar
  11. Davis, CM, Parkes-Loach, PS, Cook, CK, Meadows, KA, Bandilla, M, Scheer, H, Loach, PA 1996Comparison of the structural requirements for bacteriochlorophyll binding in the core light-harvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogsBiochemistry3530723084CrossRefPubMedGoogle Scholar
  12. Davis, CM, Bustamante, PL, Todd, JB, Parkes-Loach, PS, McGlynn, P, Olsen, JD, McMaster, L, Hunter, CN, Loach, PA 1997Evaluation of structure-function relationships in the core light-harvesting complex of photosynthetic bacteria by reconstitution with mutant polypeptidesBiochemistry3636713679CrossRefPubMedGoogle Scholar
  13. Drews, G 1985Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteriaMicrobiol Rev495970PubMedGoogle Scholar
  14. Fiedor, J, Fiedor, L, Kammhuber, N, Scherz, A, Scheer, H 2002Photodynamics of the bacteriochlorophyll-carotenoid system. 1. Influence of central metal, solvent and β-carotene on photobleaching of bacteriochlorophyll derivativesPhotochem Photobiol76145152CrossRefPubMedGoogle Scholar
  15. Fiedor, L, Scheer, H, Hunter, CN, Tschirschwitz, F, Voigt, B, Ehlert, J, Nibbering, E, Leupold, D, Elsaesser, T 2000Introduction of a 60 fs deactivation channel in the photosynthetic antenna LH1 by Ni-Bacteriopheophytin aChem Phys Lett319145152CrossRefGoogle Scholar
  16. Fiedor, L, Leupold, D, Teuchner, K, Voigt, B, Hunter, CN, Scherz, A, Scheer, H 2001Excitation trap approach to analyze size and pigment-pigment coupling: Reconstitution of LH1 antenna of Rhodobacter sphaeroides with Ni-substituted bacteriochlorophyllBiochemistry4037373747CrossRefPubMedGoogle Scholar
  17. Fiedor, L, Akahane, J, Koyama, Y 2004Carotenoid-induced cooperative formation of bacterial photosynthetic LH1 complexBiochemistry431648716496CrossRefPubMedGoogle Scholar
  18. Fotiadis, D, Qian, P, Philippsen, A, Bullough, PA, Engel, A, Hunter, CN 2004Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopyJ Biol Chem27920632068CrossRefPubMedGoogle Scholar
  19. Frank, H, Cogdell, R 1996Carotenoids in photosynthesisPhotochem Photobiol63257264PubMedGoogle Scholar
  20. Friesner, RA, Won, Y 1989Spectroscopy and electron transfer dynamics of the bacterial photosynthetic reaction centerBiochim Biophys Acta97799122PubMedGoogle Scholar
  21. Garcia-Asua, G, Cogdell, RJ, Hunter, CN 2002Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicolaMol Microbiol44233244CrossRefPubMedGoogle Scholar
  22. Gerken, U, Lupo, D, Tietz, C, Wrachtrup, J, Ghosh, R 2003Circular symmetry of the light-harvesting 1 complex from Rhodospirillum rubrum is not perturbed by interaction with the reaction centerBiochemistry421035410360CrossRefPubMedGoogle Scholar
  23. Ghosh, R, Hauser, H, Bachofen, R 1988Reversible dissociation of the B873 light harvesting complex from Rs. rubrum G-9+Biochemistry2710041014CrossRefGoogle Scholar
  24. Giuliano, G, Pollock, D, Stapp, H, Scolnik, PA 1988A genetic-physical map of the Rhodobacter capsulatus carotenoid biosynthesis gene clusterMol Gen Genet2137883CrossRefGoogle Scholar
  25. Goodwin, TW, Osman, HG 1953Studies in carotenogenesis. 9. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacterium Rhodospirillum rubrumBiochem J53541546PubMedGoogle Scholar
  26. Griffiths, M, Sistrom, WR, Cohen-Bazire, G, Stainer, RY 1955Functions of carotenoids in photosynthesisNature17612111214PubMedGoogle Scholar
  27. Griffiths, M, Stainer, RY 1956Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas sphaeroidesJ Gen Microbiol14698715PubMedGoogle Scholar
  28. Heller, BA, Loach, PA 1990Isolation and characterization of a subunit form of the B875 light-harvesting complex from Rhodobacter capsulatusPhotochem Photobiol51621627PubMedGoogle Scholar
  29. Hladik, J, Pancoska, P, Sofrova, D 1982The influence of carotenoids on the conformation of chlorophyll–protein complexes isolated from the cyanobacterium Plectonema boryanum. Absorption and circular dichroism studyBiochim Biophys Acta681263272Google Scholar
  30. Jirsakova, V, Reiss-Husson, F 1993Isolation and characterization of the core light-harvesting complex B875 and its subunit form, B820Biochim Biophys Acta1183301308Google Scholar
  31. Jirsakova, V, Reiss-Husson, F 1994A specific carotenoid is required for reconstitution of the Rubrivax gelatinosus B875 light harvesting complex from its subunit form B820FEBS Lett353151154CrossRefPubMedGoogle Scholar
  32. Karrasch, S, Bullough, PA, Ghosh, R 1995The 8.5 A projection map of the light-harvesting complex from Rhodospirillum rubrum reveals a ring composed of 16 subunitsEMBO J14631638PubMedGoogle Scholar
  33. Koepke, J, Hu, X, Muenke, C, Schulten, K, Michel, H 1996The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianumStructure4581597PubMedGoogle Scholar
  34. Koyama, Y, Fujii, R 1999Cis–trans carotenoids in photosynthesis: Configurations, excited-state properties and physiological functionsFrank, HAYoung, AJBritton, GCogdell, RJ eds. The Photochemistry of CarotenoidsKluwer Academic PublishersDordrecht, The NetherlandsGoogle Scholar
  35. Lang, HP, Cogdell, RJ, Takaichi, S, Hunter, CN 1995Complete DNA sequence, specific Tn5 insertion map, and gene assignment of the carotenoid biosynthesis pathway of Rhodobacter sphaeroidesJ Bacteriol17720642073PubMedGoogle Scholar
  36. Loach, PA, Parkes-Loach, PS 1995Structure-function relationships in core light-harvesting complexes (LHI) as determined by characterization of the structural subunit and by reconstitution experimentsBlankenship, REMadigan, MTBauer, CE eds. Anoxygenic Photosynthetic BacteriaKluwer Academic PublishersDordrecht, The Netherlands437471Google Scholar
  37. Malhorta, HC, Britton, G, Goodwin, TW 1970The occurrence of hydroxy-derivatives of phytoene and phytofluene in diphenylamine-inhibited cultures of Rhodospirillum rubrumFEBS Lett6334336CrossRefPubMedGoogle Scholar
  38. McDermott, G, Prince, SM, Freer, AA, Hawthornthwaite-Lawless, AM, Papiz, MZ, Cogdell, RJ, Isaacs, NW 1995Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteriaNature374517521CrossRefGoogle Scholar
  39. Meckenstock, RU, Brunisholz, RA, Zuber, H 1992The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part I. Purification and characterisationFEBS Lett311128134CrossRefPubMedGoogle Scholar
  40. Miller, JF, Hinchigeri, SB, Parkes-Loach, PS, Callahan, PM, Sprinkle, JR, Riccobono, JR, Loach, PA 1987Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrumBiochemistry2650555062CrossRefPubMedGoogle Scholar
  41. Moskalenko, A, Barbato, R, Giacometti, GM 1992Investigation of the neighbour relationships between photosystem II polypeptides in the two types of isolated reaction centres (D1/D2/cytb559 and CP47/D1/D2/cytb559 complexes)FEBS Lett314271274CrossRefPubMedGoogle Scholar
  42. Moskalenko, A, Erokhin, YE 1974Isolation of pigment–lipoprotein complexes from purple photosynthesizing bacteria by the method of preparative polyacryamide gel electrophoresisMikrobiologia (in Russian)43654658Google Scholar
  43. Moskalenko, A, Kuznetsova, N 1993Effect of trypsin on D1/D2-cytochrome b559 Photosystem 2 reaction center complex and reaction center from Rhodopseudomonas viridisPhotosynth Res35227234CrossRefGoogle Scholar
  44. Moskalenko, A, Toropygina, O, Kuznetsova, N 1995Mathis, P eds. Photosynthesis: from Light to BiosphereKluwer Academic PublishersDordrecht, The Netherlands309318Google Scholar
  45. Moskalenko, A, Toropygina, O, Makhneva, ZK 1997Behavior of carotenoids in Rhodospirillum rubrum cells under cultivation with diphenylamineDokl Akad Nauk355259261[in Russian]Google Scholar
  46. Moskalenko, AA, Britton, G, Connor, A, Young, A, Toropygina, O 1991The carotenoid content in the chromatophores and pigment-protein complexes isolated from cells ofBiol Membr (USSR)8249260Google Scholar
  47. Pandit, A, Stokkum, IHM, Georgakopoulu, S, Zwan, G, Grondelle, R 2003Investigations of intermediates appearing in the reassociation of the light-harvesting 1 complex of Rhodospirillum rubrumPhotosynth Res75235248CrossRefGoogle Scholar
  48. Parkes-Loach, PS, Sprinkle, JR, Loach, PA 1988Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from separately isolated α- and β-polypeptides and bacteriochlorophyll aBiochemistry2727182727CrossRefPubMedGoogle Scholar
  49. Reinsberg, D, Ottmann, K, Booth, PJ, Paulsen, H 2001Effects of chlorophyll a, chlorophyll b, and xanthophylls on the in vitro assembly kinetics of the major light-harvesting chlorophyll a/b complex, LHCIIbJ Mol Biol3085967CrossRefPubMedGoogle Scholar
  50. Ritz, T, Damjanovic, A, Schulten, K, Zhang, J-P, Koyama, Y 2000Efficient light harvesting through carotenoidsPhotosynth Res66125144CrossRefGoogle Scholar
  51. Robert, B, Cogdell, R, Grondelle, R 2003The light-harvesting system of purple bacteriaBR, GreenWW, Parson eds. Light-harvesting Antennas in PhotosynthesisDordrecht, The NetherlandsKluwer Academic Publishers,169194Google Scholar
  52. Roszak, AW, Howard, TD, Southall, J, Gardiner, AT, Law, CJ, Isaacs, NW, Cogdell, RJ 2003Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustrisScience30219691972PubMedGoogle Scholar
  53. Schmidt, K 1978Biosynthesis of carotenoidsClayton, RKSistrom, WR eds. The Photosynthetic BacteriaPlenum PressNew York729750Google Scholar
  54. Sistrom, WR, Griffiths, M, Stanier, RY 1956The biology of a photosynthetic bacterium which lacks coloured carotenoidsJ Cell Comp Physiol48473575CrossRefGoogle Scholar
  55. Takaichi, S 1999Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteriaFrank, HAYoung, AJBritton, GCogdell, RJ eds. The Photochemistry of CarotenoidsDordrecht, The NetherlandsKluwer Academic Publishers,3969Google Scholar
  56. Toropygina, OA, Makhneva, ZK, Moskalenko, AA 2003Reconstitution of carotenoids into the light-harvesting complex B800-850 of Chromatium minutissimumBiochemistry (Moscow)6811011112CrossRefGoogle Scholar
  57. Grondelle, R, Dekker, JP, Gilbro, T, Sundström, V 1994Energy transfer and trapping in photosynthesisBiochim Biophys Acta1187165CrossRefGoogle Scholar
  58. Visschers, RW, Nunn, R, Calkoen, F, Mourik, F, Hunter, CN, Rice, DW, Grondelle, R 1992Spectroscopic characterization of B820 subunits from light-harvesting complex I of Rhodospirillum rubrum and Rhodobacter sphaeroides prepared with the detergent n-octyl-rac-2,3-dipropylsulfoxideBiochim Biophys Acta1100259266Google Scholar
  59. Zuber, H, Cogdell, RJ 1995Structure and organization of purple bacterial antenna complexesBlankenship, REMadigan, MTBauer, CE eds. Structure and Organization of Purple Bacterial Antenna ComplexesKluwer Academic PublishersDordrecht, The Netherlands315348Google Scholar
  60. Zurdo, J, Centeno, MA, Odriozola, JA, Fernandez-Cabrera, C, Ramirez, JM 1995The structural role of the carotenoid in the bacterial light-harvesting protein 2 (LH2) of Rhodobacter capsulatus. A Fourier transform Raman spectroscopy and circular dichroism studyPhotosynth Res46363369CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencePushchinoRussia
  2. 2.Faculty of BiotechnologyJagiellonian UniversityCracowPoland
  3. 3.Dept. Biologie I – Bereich BotanikLMUMunichGermany

Personalised recommendations