Photosynthesis Research

, Volume 84, Issue 1–3, pp 275–281 | Cite as

Requirements for different combinations of the extrinsic proteins in specific cyanobacterial Photosystem II mutants

  • Julian J. Eaton-Rye
Regular paper


The crystallographic data available for Photosystem II (PS II) in cyanobacteria has now provided complete structures for loop E from CP43 and CP47 as well as the extrinsic subunits PsbO, PsbU and PsbV. Protein interactions between these subunits are essential for stable water splitting and there is evidence that the binding of PsbU facilitates optimal energy transfer from the phycobilisome. Interactions between PsbO and CP47 may also play a role in dimer stabilization while loop E of CP43 contributes directly to the water-splitting reaction. Recent evidence also suggests that homologs of PsbP and PsbQ play key roles in cyanobacterial PS II, and under nutrient-deficient conditions PsbQ appears essential for photoautotrophic growth.


CP47 protein photosynthesis Photosystem II PsbO protein PsbQ protein PsbV protein PsbU protein 





dark-adapted fluorescence yield when Photosystem II traps are open


O2-evolving complex


Photosystem I (II)


redox active Tyr-160 of D2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barber, J, Ferreira, K, Maghlaoui, K, Iwata, S 2004Structural model of the oxygen-evolving centre of Photosystem II with mechanistic implicationsPhys Chem Chem Phys647374742CrossRefGoogle Scholar
  2. Bricker TM and Burnap RL (2005) The extrinsic proteins. In: Wydrzynski T and Satoh K (eds) The Water/Plastoquinone Oxidoreductase of Photosynthesis. Springer, Dordrecht, The Netherlands (in press). Google Scholar
  3. Bricker, TM, Frankel, LK 1998The structure and function of the 33 kDa extrinsic protein of Photosystem II. A critical reviewPhotosynth Res56157173CrossRefGoogle Scholar
  4. Bricker, TM, Frankel, LK 2002The structure and function of CP47 and CP43 in Photosystem IIPhotosynth Res72131146CrossRefGoogle Scholar
  5. Chu, HA, Hillier, W, Debus, RJ 2004Evidence that the C-terminus of the D1 polypeptide of Photosystem II is ligated to the manganese ion that undergoes oxidation during the S-1 to S-2 transition: an isotope-edited FTIR studyBiochemistry4331523166PubMedGoogle Scholar
  6. Clarke, SM, Eaton-Rye, JJ 1999Mutation of Phe-363 in the Photosystem II protein CP47 impairs photoautotrophic growth, alters the chloride requirement, and prevents photosynthesis in the absence of either PS II-O or PS II-V in Synechocystis sp. PCC 6803Biochemistry3827072715PubMedGoogle Scholar
  7. Las Rivas, J, Barber, J 2004Analysis of the structure of the PsbO protein and its implicationsPhotosynth Res81329343PubMedGoogle Scholar
  8. Las Rivas, J, Balsera, M, Barber, J 2004Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteinsTrends Plant Sci91825PubMedGoogle Scholar
  9. Eaton-Rye JJ and Putnam-Evans C (2005) The core antenna components. In: Wydrzynski T and Satoh K (eds) The Water/plastoquinone Oxidoreductase of Photosynthesis. Springer, Dordrecht, The Netherlands (in press). Google Scholar
  10. Eaton-Rye, JJ, Vermaas, WFJ 1991Oligonucleotide-directed mutagenesis of psbB, the gene encoding CP47, employing a deletion strain of the cyanobacterium Synechocystis sp. PCC 6803Plant Mol Biol1711651177PubMedGoogle Scholar
  11. Eaton-Rye JJ, Carlisle BH, Shand JA, Martin CA and Manulevu R (2005). Structural features associated with CP47, D1 and the extrinsic proteins that stabilize oxygen evolution. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives. Allen Press, Lawrence, Kansas (in press). Google Scholar
  12. Eaton-Rye, JJ, Shand, JA, Nicoll, WS 2003pH-dependent photoautotrophic growth of specific Photosystem II mutants lacking lumenal extrinsic polypeptides in Synechocystis PCC 6803FEBS Lett543148153PubMedGoogle Scholar
  13. Ferreira, KN, Iverson, TM, Maghlaoui, K, Barber, J, Iwata, S 2004Architecture of the photosynthetic oxygen-evolving centerScience30318311838PubMedGoogle Scholar
  14. Frankel, LK, Bricker, TM 1989Epitope mapping of the monoclonal antibody FAC2 on the apoprotein of CPa-1 in Photosystem IIFEBS Lett257279282PubMedGoogle Scholar
  15. Frankel, LK, Bricker, TM 1992Interaction of CPa-1 with the manganese-stabilizing protein of Photosystem II: identification of domains on CPa-1 which are shielded from N-hydroxysuccinimide biotinylation by the manganese-stabilzing proteinBiochemistry311105911064PubMedGoogle Scholar
  16. Hayashi, H, Fujimura, Y, Mohanty, PS, Murata, N 1993The role of CP47 in the evolution of oxygen and the binding of the extrinsic 33-kDa protein to the core complex of Photosystem II as determined by limited proteolysisPhotosynth Res363542CrossRefGoogle Scholar
  17. Kamiya, N, Shen, J-R 2003Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolutionProc Natl Acad Sci USA10098103PubMedGoogle Scholar
  18. Kashino, Y, Lauber, WM, Carroll, JA, Wang, Q, Whitmarsh, J, Satoh, K, Pakrasi, HB 2002Proteomic analysis of a highly active Photosystem II preparation from the cyanobacterium Synechocystis sp PCC 6803 reveals the presence of novel polypeptidesBiochemistry4180048012PubMedGoogle Scholar
  19. Kimura, A, Eaton-Rye, JJ, Morita, EH, Nishiyama, Y, Hayashi, H 2002Protection of the oxygen-evolving machinery by the extrinsic proteins of Photosystem II is essential for development of cellular thermotolerance in Synechocystis sp. PCC 6803Plant Cell Physiol43932938PubMedGoogle Scholar
  20. Knoepfle, N, Bricker, TM, Putnam-Evans, C 1999Site-directed mutagenesis of basic arginine residues 305 and 342 in the CP 43 protein of Photosystem II affects oxygen-evolving activity in Synechocystis 6803Biochemistry3815821588PubMedGoogle Scholar
  21. McEvoy, JP, Brudvig, GW 2004Structure-based mechanism of photosynthetic water oxidationPhys Chem Chem Phys647544763CrossRefGoogle Scholar
  22. Morgan, TR, Shand, JA, Clarke, SM, Eaton-Rye, JJ 1998Specific requirements for cytochrome c-550 and the manganese-stabilizing protein in photoautotrophic strains of Synechocystis sp. PCC 6803 with mutations in the domain Gly-351 to Thr-436 of the chlorophyll-binding protein CP47Biochemistry371443714449PubMedGoogle Scholar
  23. Nicoll, WS 2001The role of the D1 and CP47 components of the Photosystem II oxygen-evolving complexUniversity of OtagoDunedin, New ZealandPhD thesisGoogle Scholar
  24. Nishiyama, Y, Los, DA, Murata, N 1999PsbU, a protein associated with Photosystem II, is required for the acquisition of cellular thermotolerance in Synechococcus species 7002Plant Physiol120301308PubMedGoogle Scholar
  25. Ohta, H, Yoshida, N, Sano, M, Hirano, M, Nakazato, K, Enami, I 1995Evidence for electrostatic interaction of the loop A on CP 47 with the extrinsic 33  kDa proteinMathis, P eds. Photosynthesis: from Light to BiosphereDordrechtKluwer Academic Publishers361364Google Scholar
  26. Ohta, H, Suzuki, T, Ueno, M, Okumura, A, Yoshihara, S, Shen, J-R, Enami, I 2003Extrinsic proteins of Photosystem II. An intermediate member of the PsbQ protein family in red algal PS IIEur J Biochem27041564163PubMedGoogle Scholar
  27. Philbrick, JB, Diner, BA, Zilinskas, BA 1991Construction and characterization of cyanobacterial mutants lacking the manganese-stabilizing polypeptide of Photosystem IIJ Biol Chem2661337013376PubMedGoogle Scholar
  28. Putnam-Evans, C, Bricker, TM 1992Site-directed mutagenesis of the CPa-1 protein of Photosystem II: alteration of the basic residue pair 384,385R to 384,385G leads to a defect associated with the oxygen-evolving complexBiochemistry311148211488PubMedGoogle Scholar
  29. Putnam-Evans, C, Bricker, TM 1997Site-directed mutagenesis of the basic residues 321K to 321G in the CP 47 protein of Photosystem II alters the chloride requirement for growth and oxygen-evolving activity in Synechocystis 6803Plant Mol Biol34455463PubMedGoogle Scholar
  30. Putnam-Evans, C, Wu, J, Bricker, TM 1996aSite-directed mutagenesis of the CP 47 protein of Photosystem II: alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop EPlant Mol Biol3211911195CrossRefGoogle Scholar
  31. Putnam-Evans, C, Burnap, R, Wu, J, Whitmarsh, J, Bricker, TM 1996bSite-directed mutagenesis of the CP 47 protein of Photosystem II: alteration of conserved charged residues in the domain 364E−444RBiochemistry3540464053CrossRefGoogle Scholar
  32. Qian, M, Al-Khaldi, SF, Putnam-Evans, C, Bricker, TM, Burnap, RL 1997Photoassembly of the Photosystem II (Mn)4 cluster in site-directed mutants impaired in the binding of the manganese-stabilizing proteinBiochemistry361524415252PubMedGoogle Scholar
  33. Rosenberg, C, Christian, J, Bricker, TM, Putnam-Evans, C 1999Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assemblyBiochemistry381599416000PubMedGoogle Scholar
  34. Seidler, A 1996The extrinsic polypeptides of Photosystem IIBiochim Biophys Acta12773560PubMedGoogle Scholar
  35. Shen, J-R, Inoue, Y 1993Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12 kDa protein, in cyanobacterial Photosystem IIBiochemistry3218251832PubMedGoogle Scholar
  36. Shen, J-R, Ikeuchi, M, Inoue, Y 1997Analysis of the psbU gene encoding the 12-kDa extrinsic protein of Photosystem II and studies on its role by deletion mutagenesis in Synechocystis sp. PCC 6803J Biol Chem2721782117826PubMedGoogle Scholar
  37. Shen, J-R, Qian, M, Inoue, Y, Burnap, RL 1998Functional characterization of Synechocystis sp. PCC 6803 ΔpsbU and ΔpsbV mutants reveals important roles of cytochrome c-550 in cyanobacterial oxygen evolutionBiochemistry3715511558PubMedGoogle Scholar
  38. Summerfield, TC, Shand, JA, Bentley, FK, Eaton-Rye, JJ 2005PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for Photosystem II activity in specific mutants and in nutrient-limiting conditionsBiochemistry44805815PubMedGoogle Scholar
  39. Thornton, LE, Ohkawa, H, Roose, JL, Kashino, Y, Keren, N, Pakrasi, HB 2004Homologs of plant PsbP and PsbQ proteins are necessary for regulation of Photosystem II activity in the cyanobacterium Synechocystis 6803Plant Cell1621642175PubMedGoogle Scholar
  40. Veerman J, Eaton-Rye J, Mullineaux C, Vasil’ev S and Bruce D (2005) When a lumenal protein interferes with stromal side affairs: Synechocystis PCC 6803 mutants lacking PsbU. In: van der Est A and Bruce D (eds) Photosynthesis: Fundamental Aspects to Global Perspectives. Allen Press, Lawrence, Kansas (in press) Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of OtagoDunedinNew Zealand

Personalised recommendations