Photosynthesis Research

, Volume 84, Issue 1–3, pp 303–308 | Cite as

Photo-CIDNP solid-state NMR on Photosystems I and II:what makes P680 special?

  • Anna Diller
  • Alia
  • Esha Roy
  • Peter Gast
  • Hans J. van Gorkom
  • Jan Zaanen
  • Huub J. M. de Groot
  • Clemens Glaubitz
  • Jörg Matysik


The origin of the extraordinary high redox potential of P680, the primary electron donor of Photosystem II, is still unknown. Photochemically induced dynamic nuclear polarisation (photo-CIDNP) 13C magic-angle spinning (MAS) NMR is a powerful method to study primary electron donors. In order to reveal the electronic structure of P680, we compare new photo-CIDNP MAS NMR data of Photosystem II to those of Photosystem I. The comparison reveals that the electronic structure of the P680 radical cation is a Chl a cofactor with strong matrix interaction, while the radical cation of P700, the primary electon donor of Photosystem I, appears to be a Chl a cofactor which is essentially undisturbed. Possible forms of cofactor–matrix interactions are discussed.


electron transfer P680 photo-CIDNP Photosystem II solid-state NMR 





chemical shift anisotropy


differential decay


electron nuclear double resonance


electron paramagnetic resonance


Fourier transform infrared




highest occupied molecular orbital


lowest unoccupied molecular orbital


magic angle spinning


photochemically induced dynamic nuclear polarisation


Photosystems I, II


three-spin mixing


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, RT, Rowan, AE 1991Nuclear magnetic resonance spectrosocopy of chlorophyllH, Scheer eds. ChlorophyllsCRC PressBoca Raton, FL797834Google Scholar
  2. Alia, Roy E, Gast, van Gorkom HJ, de Groot HJM, Jeschke G, Matysik J (2004) Photochemically induced dynamic nuclear polarisation in Photosystem I of plants observed by 13C magic-angle spinning NMR. J Am Chem Soc 126: 12819–12826Google Scholar
  3. Artz, K, Williams, JC, Allen, JP, Lendzian, F, Rautter, J, Lubitz, W 1997Relationship between the oxidation potential and electron spin density of the primary electron donor in reaction centers from Rhodobacter sphaeroidesProc Natl Acad Sci USA941358213587PubMedGoogle Scholar
  4. Breitmaier, E, Voelter, W 1990Carbon-13 NMR SpectroscopyVCH publishersNew York, USAGoogle Scholar
  5. de Groot, HJM 2000Solid-state NMR spectroscopy applied to membrane proteinsCurr Opin Struct Biol10593600PubMedGoogle Scholar
  6. Diner, BA, Schlodder, E, Nixon, PJ, Coleman, WJ, Rappaport, F, Lavergne, J, Vermaas, WFJ, Dexter, DA 2001Site-directed mutations at D1-His198 and D2-His197 on Photosystem II in synechocystis PCC 6803: Sites of primary charge separation and cation and triplet stabilisationBiochemistry4092659281PubMedGoogle Scholar
  7. Jeschke, G, Matysik, J 2003A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solidsChem Phys294239255CrossRefGoogle Scholar
  8. Kamiya, N, Shen, JR 2003Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7 Ångström resolutionProc Natl Acad Sci USA10098103PubMedGoogle Scholar
  9. Klessinger, M, Michl, J 1995Excited States and Photochemistry of Organic MoleculesVCH PublishersNew York,Google Scholar
  10. Maggiora, LL, Petke, JD, Gopal, D, Iwamoto, RT, Maggiora, GM 1985Experimental and theoretical-studies of Schiff-base chlorophyllsPhotochem Photobiol426975Google Scholar
  11. Matysik, J, Alia, , Gast, P, Gorkom, HJ, Hoff, AJ, Groot, HJM 2000Photochemically induced nuclear spin polarization in reaction centers of Photosystem II observed by C-13-solid-state NMR reveals a strongly asymmetric electronic structure of the P-680·+ primary donor chlorophyllProc Natl Acad Sci USA9798659870PubMedGoogle Scholar
  12. Matysik J, Schulten E, Alia, Gast P, Raap J, Lugtenburg J, Hoff AJ and de Groot HJM (2001a) Photo-CIDNP C-13 magic angle spinning NMR on bacterial reaction centres: exploring the electronic structure of the special pair and its surroundings. Biol Chem 382: 1271–1276Google Scholar
  13. Matysik J, Alia, Gast P, Lugtenburg J, Hoff AJ and de Groot HJM (2001b) Photochemically induced dynamic nuclear polarization in bacterial photosynthetic reaction centres observed by 13C solid-sate NMR. In: Kiihne SR and de Groot HJM (eds) Perspectives on Solid State NMR in Biology, pp 215–225. Kluwer Academic Publishers, Dor- drecht, The NetherlandsGoogle Scholar
  14. Mulkidjanian, AY 1999Photosystem II of green plants: on the possible role of retarded protonic relaxation in water oxidationBiochim Biophys Acta141016PubMedGoogle Scholar
  15. Noguchi, T, Tomo, T, Inoue, Y 1998Fourier transform infrared study of the cation radical of P680 in the Photosystem II reaction center: evidence for charge delocalization on the chlorophyll dimerBiochemistry371361413625PubMedGoogle Scholar
  16. Rigby, SEJ, Nugent, JHA, O’Malley, PJ 1994Endor and special triple-resonance studies of chlorophyll cation radicals in Photosystem IIBiochemistry331004310050PubMedGoogle Scholar
  17. Rubin, AB, Kononenko, AA, Venediktov, PS, Borisevitch, GP, Knox, PP, Lukashev, EP 1980Polarization effects in photosynthetic membranesInt J Quantum Chem17587593CrossRefGoogle Scholar
  18. Rubin, AB, Kononenko, AA, Shaitan, KV, Pashchenko, VZ, Riznichenko, GYU 1994Electron transport in photosynthesisBiophysics39173195Google Scholar
  19. Schulten, EAM, Matysik, J, Alia, , Kiihne, S, Raap, J, Lugtenburg, J, Gast, P, Hoff, AJ, Groot, HJM 2002C-13 MAS NMR and photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of the special pair of Rhodobacter sphaeroides reaction centersBiochemistry4187088717PubMedGoogle Scholar
  20. Sham, Y, Muegge, I, Warshel, A 1998The effect of protein relaxation on charge-charge interactions and dielectric constants of proteinsBiophys J7417441753PubMedGoogle Scholar
  21. van Gorkom, HJ, Schelvis, JPM 1993Kok’s oxygen clock: what makes it tick? The structure of P680 and consequences of its oxidizing powerPhotosynth Res38297301CrossRefGoogle Scholar
  22. Telfer, A 2002What is beta-carotene doing in the Photosystem II reaction centrePhilos T Roy Soc London Ser B35714311439CrossRefGoogle Scholar
  23. Tracewell, CA, Brudvig, GW 2003Two redox-active beta-carotene molecules in Photosystem IIBiochemistry4291279136PubMedGoogle Scholar
  24. Trissl, HW, Bernhardt, K, Lapin, M 2001Evidence for protein dielectric relaxations in reaction centers associated with the primary charge separation detected from Rhodospirillum rubrum chromatophores by combined photovoltage and absorption measurements in the 1–15 ns time rangeBiochemistry4052905298PubMedGoogle Scholar
  25. Witt, HT 2004Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesisPhotosynth Res8086107Google Scholar
  26. Zouni, A, Witt, H-T, Kern, J, Fromme, P, Krauss, N, Saenger, W, Orth, P 2001Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Angström resolutionNature409739743PubMedGoogle Scholar
  27. Zysmilich, MG, McDermott, A 1994Photochemically induced dynamic nuclear-polarization in the solid-state N-15 spectra of reaction centers from photosynthetic bacteria Rhodobacter Sphaeroides R-26J Am Chem Soc11683628363CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Anna Diller
    • 1
  • Alia
    • 1
  • Esha Roy
    • 1
  • Peter Gast
    • 2
  • Hans J. van Gorkom
    • 2
  • Jan Zaanen
    • 3
  • Huub J. M. de Groot
    • 1
  • Clemens Glaubitz
    • 4
  • Jörg Matysik
    • 1
  1. 1.Gorlaeus LaboratoriaLeiden Institute of ChemistryLeidenThe Netherlands
  2. 2.Department of BiophysicsHuygens LaboratoriumLeidenThe Netherlands
  3. 3.Lorentz Institute for Theoretical PhysicsLeidenThe Netherlands
  4. 4.Institute of Biophysical ChemistryJohann Wolfgang Goethe UniversityFrankfurt/MainGermany

Personalised recommendations