Abstract
Studying weed spatial distribution patterns and implementing precise herbicide applications requires accurate weed mapping. In this study, a simple unmanned aerial vehicle (UAV) was utilized to survey 11 dry onion (Allium cepa L.) commercial fields to examine late-season weed classification and investigate weeds spatial pattern. In addition, orthomosaics were resampled to a coarser spatial resolution to simulate and examine the accuracy of weed mapping at different altitudes. Overall, 176 weed maps were generated and evaluated. Pixel and object-based image analyses were assessed, employing two supervised classification algorithms: Maximum Likelihood (ML) and Support Vector Machine (SVM). Classification processes resulted in highly accurate weed maps across all spatial resolutions tested. Weed maps contributed to three insights regarding the late-season weed spatial pattern in onion fields: 1) weed coverage varied significantly between fields, ranging from 1 to 79%; 2) weed coverage was similar within and between crop rows; and 3) weed pattern was patchy in all fields. The last finding, combined with the ability to map weeds using a low cost, off-the-shelf UAV, constitutes an important step in developing precise weed control management in onion fields.
This is a preview of subscription content, access via your institution.



References
Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. International Journal of Computer Applications, 119(8), 20–25.
Alvarez-Fernandez, R. (2012). Herbicides—environmental impact studies and management approaches. Herbicides—Environmental Impact Studies and Management Approaches. InTech. https://doi.org/https://doi.org/10.5772/1206
Andújar, D., Ruiz, D., Ribeiro, Á., Fernández-Quintanilla, C., & Dorado, J. (2011). Spatial distribution patterns of johnsongrass (Sorghum halepense) in corn fields in Spain. Weed Science, 59(1), 82–89. https://doi.org/10.1614/ws-d-10-00114.1.
Bagavathiannan, M. V., Graham, S., Ma, Z., Barney, J. N., Coutts, S. R., Caicedo, A. L., et al. (2019). Considering weed management as a social dilemma bridges individual and collective interests. Nature Plants, 5(4), 343–351. https://doi.org/10.1038/s41477-019-0395-y.
Bagavathiannan, M. V., & Norsworthy, J. K. (2012). Late-season seed production in arable weed communities: Management implications. Weed Science, 60(3), 325–334. https://doi.org/10.1614/WS-D-11-00222.1.
Barroso, J., Fernandez-Quintanilla, C., Maxwell, B. D., & Rew, L. J. (2004). Simulating the effects of weed spatial pattern and resolution of mapping and spraying on economics of site-specific management. Weed Research, 44(6), 460–468. https://doi.org/10.1111/j.1365-3180.2004.00423.x.
Blank, L., Birger, N., & Eizenberg, H. (2019). Spatial and temporal distribution of Ecballium elaterium in Almond orchards. Agronomy, 9(11), 751. https://doi.org/10.3390/agronomy9110751.
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16. https://doi.org/10.1016/J.ISPRSJPRS.2009.06.004.
Borra-Serrano, I., Peña, J. M., Torres-Sánchez, J., Mesas-Carrascosa, F. J., & López-Granados, F. (2015). Spatial quality evaluation of resampled unmanned aerial vehicle-imagery for weed mapping. Sensors, 15, 19688–19708. https://doi.org/10.3390/s150819688.
Cardina, J., Johnson, G., & Sparrow, D. (1997). The nature and consequence of weed spatial distribution. Weed Science, 45(3), 364–373. https://doi.org/10.2307/4046028.
Castaldi, F., Pelosi, F., Pascucci, S., & Casa, R. (2017). Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precision Agriculture, 18(1), 76–94. https://doi.org/10.1007/s11119-016-9468-3.
Castillejo-González, I., de Castro, A., Jurado-Expósito, M., Peña, J.-M., García-Ferrer, A., & López-Granados, F. (2019). Assessment of the persistence of Avena sterilis L. patches in wheat fields for site-specific sustainable management. Agronomy, 9(1), 30. https://doi.org/10.3390/agronomy9010030.
Castillejo-González, I. L., Peña-Barragán, J. M., Jurado-Expósito, M., Mesas-Carrascosa, F. J., & López-Granados, F. (2014). Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. European Journal of Agronomy, 59, 57–66. https://doi.org/10.1016/j.eja.2014.05.009.
Christensen, S., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Nadimi, E. S., & Jørgensen, R. (2009). Site-specific weed control technologies. Weed Research, 49(3), 233–241. https://doi.org/10.1111/j.1365-3180.2009.00696.x.
Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619. https://doi.org/10.1109/34.1000236.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B.
de Castro, A. I., Torres-Sánchez, J., Peña, J. M., Jiménez-Brenes, F. M., Csillik, O., & López-Granados, F. (2018). An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sensing, 10(2), 285. https://doi.org/10.3390/rs10020285.
de Castro, A. I., Jurado-Expósito, M., Peña-Barragán, J. M., & López-Granados, F. (2012). Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precision Agriculture, 13(3), 302–321.
de Castro, A. I., López-Granados, F., & Jurado-Expósito, M. (2013). Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control. Precision Agriculture, 14(4), 392–413. https://doi.org/10.1007/s11119-013-9304-y.
Dunan, C. M., Westra, P., Moore, F., & Chapman, P. (1996). Modelling the effect of duration of weed competition, weed density and weed competitiveness on seeded, irrigated onion. Weed Research, 36(3), 259–269. https://doi.org/10.1111/j.1365-3180.1996.tb01655.x.
FAO. (2020). Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. [Rome] :FAO, 2020. Retrieved February 24, 2020, from http://www.fao.org/faostat/en/#data/QC.
Fernández-Quintanilla, C., Peña, J. M., Andújar, D., Dorado, J., Ribeiro, A., & López-Granados, F. (2018). Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Research, 58(4), 259–272. https://doi.org/10.1111/wre.12307.
Freemark, K., & Boutin, C. (1995). Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: A review with special reference to North America. Agriculture, Ecosystems and Environment, 52, 2–3. https://doi.org/10.1016/0167-8809(94)00534-L.
Gerhards, R., & Oebel, H. (2006). Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46(3), 185–193. https://doi.org/10.1111/j.1365-3180.2006.00504.x.
Gerhards, R., Sökefeld, M., Timmermann, C., Kühbauch, W., & Williams, I. M. (2002). Site-specific weed control in maize, sugar beet, winter wheat, and winter barley. Precision Agriculture, 3(1), 25–35. https://doi.org/10.1023/A:1013370019448.
Ghosheh, H. Z. (2004). Single herbicide treatments for control of broadleaved weeds in onion (Allium cepa). Crop Protection, 23(6), 539–542. https://doi.org/10.1016/j.cropro.2003.10.010.
Giraudoux, P., Antonietti, J.-P., Beale, C., Pleydell, D., & Treglia, M. (2018). Package “pgirmess” Title Spatial Analysis and Data Mining for Field Ecologists. https://cran.r-project.org/web/packages/pgirmess/pgirmess.pdf
Gonzalez-Andujar, J. L., & Saavedra, M. (2003). Spatial distribution of annual grass weed populations in winter cereals. Crop Protection, 22(4), 629–633. https://doi.org/10.1016/S0261-2194(02)00247-8.
Haynes, R. J. (1985). Principles of fertilizer use for trickle irrigated crops. Fertilizer Research, 6(3), 235–255. https://doi.org/10.1007/BF01048798.
Huang, H., Deng, J., Lan, Y., Yang, A., Deng, X., & Zhang, L. (2018a). A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery. PLoS ONE, 13(4), e0196302. https://doi.org/10.1371/journal.pone.0196302.
Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018b). UAV low-altitude remote sensing for precision weed management. Weed Technology, 32, 2–6. https://doi.org/10.1017/wet.2017.89.
Hunt, E. R., & Daughtry, C. S. T. (2018). What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? International Journal of Remote Sensing, 39(15–16), 5345–5376. https://doi.org/10.1080/01431161.2017.1410300.
Jepson, P. C., Guzy, M., Blaustein, K., Sow, M., Sarr, M., Mineau, P., & Kegley, S. (2014). Measuring pesticide ecological and health risks in West African agriculture to establish an enabling environment for sustainable intensification. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2013.0491.
Johnson, G. A., Mortensen, D. A., & Martin, A. R. (1995). A simulation of herbicide use based on weed spatial distribution. Weed Research, 35(3), 197–205. https://doi.org/10.1111/j.1365-3180.1995.tb02033.x.
Jurado-Expósito, M., de Castro, A. I., Torres-Sánchez, J., Jiménez-Brenes, F. M., & López-Granados, F. (2019). Papaver rhoeas L. mapping with cokriging using UAV imagery. Precision Agriculture, 20(5), 1045–1067. https://doi.org/10.1007/s11119-019-09635-z.
Kalischuk, M., Paret, M. L., Freeman, J. H., Raj, D., Da Silva, S., Eubanks, S., et al. (2019). An improved crop scouting technique incorporating unmanned aerial vehicle–assisted multispectral crop imaging into conventional scouting practice for gummy stem blight in watermelon. Plant Disease, 103(7), 1642–1650. https://doi.org/10.1094/pdis-08-18-1373-re.
Keeling, J. W., Lloyd, R. W., & Abernathy, J. R. (1989). Rotational crop response to repeated applications of Norflurazon. Weed Technology, 3(1), 122–125. https://doi.org/10.1017/s0890037x00031456.
Khokhar, K. M., Shakeel Muhammad, M. T., & Farooq, C. M. (2006). Evaluation of integrated weed management practices for onion in Pakistan. Crop Protection, 25(9), 968–972. https://doi.org/10.1016/j.cropro.2006.01.003.
Koller, M., & Lanini, W. T. (2005). Site-specific herbicide applications based on weed maps provide effective control. California Agriculture, 59(3), 182–187. https://doi.org/10.3733/ca.v059n03p182.
Krähmer, H., Andreasen, C., Economou-Antonaka, G., Holec, J., Kalivas, D., Kolářová, M., et al. (2020). Weed surveys and weed mapping in Europe: State of the art and future tasks. Crop Protection, 129, 105010. https://doi.org/10.1016/j.cropro.2019.105010.
Kudsk, P., & Streibig, J. C. (2003). Herbicides-a two-edged sword. Weed Research, 43(2), 90–102. https://doi.org/10.1046/j.1365-3180.2003.00328.x.
Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78(2), 117–125. https://doi.org/10.1006/JAER.2000.0630.
Lambert, J. P. T., Hicks, H. L., Childs, D. Z., & Freckleton, R. P. (2018). Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: A case study with Alopecurus myosuroides. Weed Research, 58(1), 35–45. https://doi.org/10.1111/wre.12275.
Longchamps, L., Panneton, B., Simard, M.-J., & Leroux, G. D. (2012). Could weed sensing in corn interrows result in efficient weed control? Weed Technology, 26(4), 649–656. https://doi.org/10.1614/wt-d-12-00030.1.
López-Granados, F., Gómez-Casero, M. T., Peña-Barragán, J. M., Jurado-Expósito, M., & García-Torres, L. (2010). Classifying irrigated crops as affected by phenological stage using discriminant analysis and neural networks. Journal of the American Society for Horticultural Science, 135(5), 465–473. https://doi.org/10.21273/jashs.135.5.465.
López-Granados, F., Torres-Sánchez, J., De Castro, A. I., Serrano-Pérez, A., Mesas-Carrascosa, F. J., & Peña, J. M. (2016). Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery. Agronomy for Sustainable Development, 36(4), 67. https://doi.org/10.1007/s13593-016-0405-7.
López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., Mesas-Carrascosa, F.-J., & Peña, J.-M. (2016). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precision Agriculture, 17(2), 183–199. https://doi.org/10.1007/s11119-015-9415-8.
Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. https://doi.org/10.1080/01431160600746456.
Medeiros, H. R., Thibes Hoshino, A., Ribeiro, M. C., & de Oliveira Menezes Junior, A. (2016). Landscape complexity affects cover and species richness of weeds in Brazilian agricultural environments. Basic and Applied Ecology, 17(8), 731–740. https://doi.org/10.1016/j.baae.2016.10.001.
Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17.
Nordmeyer, H. (2006). Patchy weed distribution and site-specific weed control in winter cereals. Precision Agriculture, 7(3), 219–231. https://doi.org/10.1007/s11119-006-9015-8.
Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31. Cambridge University Press. https://doi.org/10.1017/S0021859605005708.
Otukei, J. R., & Blaschke, T. (2010). Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, S27–S31. https://doi.org/10.1016/J.JAG.2009.11.002.
Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8, e77151. https://doi.org/10.1371/journal.pone.0077151.
Pérez-Ortiz, M., Peña, J. M., Peña, P., Gutiérrez, P. A., Torres-Sánchez, J., Hervás-Martínez, C., & López-Granados, F. (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing Journal, 37, 533–544. https://doi.org/10.1016/j.asoc.2015.08.027.
Pix4D. (2019). How to verify that there is enough overlap between the images. Retrieved November 5, 2019, from https://support.pix4d.com/hc/en-us/articles/203756125-How-to-verify-that-there-is-enough-overlap-between-the-images.
Pretty, J. N., Brett, C., Gee, D., Hine, R. E., & Mason, C. F. (2000). An assessment of the total external costs of UK agriculture. Agricultural Systems, 65, 113–136. https://doi.org/10.1016/S0308-521X(00)00031-7.
Rasmussen, J., Nielsen, J., Streibig, J. C., Jensen, J. E., Pedersen, K. S., & Olsen, S. I. (2018). Pre-harvest weed mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precision Agriculture, 20, 983–999. https://doi.org/10.1007/s11119-018-09625-7.
Rew, L. J., & Cousens, R. D. (2001). Spatial distribution of weeds in arable crops: Are current sampling and analytical methods appropriate? Weed Research, 41(1), 1–18. https://doi.org/10.1046/j.1365-3180.2001.00215.x.
Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., & García-Alegre, M. C. (2005). Development of an image analysis system for estimation of weed pressure. In J. V. Stafford (Ed.), Precision Agriculture ’05 (pp. 169–174). Wageningen, The Netherlands: Wageningen Academic Publishers.
San-Martín, C., Andújar, D., Fernández-Quintanilla, C., & Dorado, J. (2015). Spatial distribution patterns of weed communities in corn fields of Central Spain. Weed Science, 63(4), 936–945. https://doi.org/10.1614/ws-d-15-00031.1.
San Martín, C., Milne, A., Webster, R., Storkey, J., Andújar, D., Fernández-Quintanilla, C., et al. (2018). Spatial analysis of digital imagery of weeds in a maize crop. ISPRS International Journal of Geo-Information, 7(2), 61. https://doi.org/10.3390/ijgi7020061.
Schuster, I., Nordmeyer, H., & Rath, T. (2007). Comparison of vision-based and manual weed mapping in sugar beet. Biosystems Engineering, 98(1), 17–25. https://doi.org/10.1016/j.biosystemseng.2007.06.009.
Sivesind, E. C., Leblanc, M. L., Cloutier, D. C., Seguin, P., & Stewart, K. A. (2012). Impact of selective flame weeding on onion yield, pungency, flavonoid concentration, and weeds. Crop Protection, 39, 45–51. https://doi.org/10.1016/J.CROPRO.2012.03.009.
Tamouridou, A. A., Alexandridis, T. K., Pantazi, X. E., Lagopodi, A. L., Kashefi, J., & Moshou, D. (2017). Evaluation of UAV imagery for mapping Silybum marianum weed patches. International Journal of Remote Sensing, 38(8–10), 2246–2259. https://doi.org/10.1080/01431161.2016.1252475.
Tardif-Paradis, C., Simard, M.-J., Leroux, G. D., Panneton, B., Nurse, R. E., & Vanasse, A. (2015). Effect of planter and tractor wheels on row and inter-row weed populations. Crop Protection, 71, 66–71. https://doi.org/10.1016/J.CROPRO.2015.01.026.
Timmermann, C., Gerhards, R., & Kühbauch, W. (2003). The economic impact of site-specific weed control. Precision Agriculture, 4(3), 249–260. https://doi.org/10.1023/A:1024988022674.
van Heemst, H. D. J. (1985). The influence of weed competition on crop yield. Agricultural Systems, 18(2), 81–93. https://doi.org/10.1016/0308-521X(85)90047-2.
Wilson, B. J., & Brain, P. (1991). Long-term stability of distribution of Alopecurus myosuroides Huds. within cereal fields. Weed Research, 31(6), 367–373. https://doi.org/10.1111/j.1365-3180.1991.tb01776.x.
Wilson, C., & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecological Economics, 39(3), 449–462. https://doi.org/10.1016/S0921-8009(01)00238-5.
Zimdahl, R. L. (2018). Fundamentals of weed science (5th ed.). Amsterdam: Elsevier. https://doi.org/10.1016/C2015-0-04331-3.
Acknowledgements
We would like to thank the farmers for allowing us to survey their fields. We also wish to thank Eli Margalit, Extension Service, Ministry of Agriculture. We are likewise grateful to Prof. Hanan Eizenberg and Dr. Ran Lati, from the Newe Yaar research station, and Prof. Yishai Weinstein from Bar Ilan University, for valuable discussions. The authors wish to thank the three anonymous reviewers and the editor for their constructive comments.
Funding
Not applicable.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Rozenberg, G., Kent, R. & Blank, L. Consumer-grade UAV utilized for detecting and analyzing late-season weed spatial distribution patterns in commercial onion fields. Precision Agric (2021). https://doi.org/10.1007/s11119-021-09786-y
Accepted:
Published:
Keywords
- Classification
- UAV
- Weed mapping
- Site specific weed management
- Spatial pattern