Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat

Abstract

Nitrogen (N) fertilization in durum wheat has traditionally been managed based on yield goals without considering temporal and spatial variability of yield potential related to changes in soil properties, weather and crop response to fertilization. In fact, this approach may lead to inefficient N use by the crop, resulting in both economic losses and environmental issues. To overcome these drawbacks, several optical-oriented, site-specific management systems have been developed to consider the effect of the aforementioned sources of variability and modulate N applications to the actual crop nutrient status and requirements. In this study, a novel approach that integrates proximal sensing, seasonal weather forecasts and crop modelling to manage site-specific N fertilization in durum wheat is proposed. This approach is based on four successive steps: (1) optimal N supply is estimated by means of a crop model fed with a mix of observed and forecast weather data; (2) actual crop N uptake is estimated using proximal sensing; (3) N prescription maps are created merging crop model and proximal sensing information; (4) N-Variable Rate Application (N-VRA). The aforementioned approach was implemented in a 13.6-ha field characterized by large soil variability in texture and organic matter content. Results indicated that the system was able to capture spatial variability in crop N uptake and manage N distribution through N-VRA leading to a substantial reduction of the spatial variability in yield and protein content while reducing the total amount of N supplied compared to uniform treatments. However, further advances are necessary to improve model performances.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Arnall, D. B., Mallarino, A. P., Ruark, M. D., Varvel, G. E., Solie, J. B., Stone, M. L., et al. (2013). Relationship between grain crop yield potential and nitrogen response. Agronomy Journal,105(5), 1335–1344.

    CAS  Article  Google Scholar 

  2. Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nature Climate Change,5(2), 143–147.

    Article  Google Scholar 

  3. Asseng, S., McIntosh, P. C., Wang, G., & Khimashia, N. (2012). Optimal N fertiliser management based on a seasonal forecast. European Journal of Agronomy,38, 66–73.

    CAS  Article  Google Scholar 

  4. Baigorria, G. A., Jones, J. W., & O’Brien, J. J. (2008). Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology,148(8–9), 1353–1361.

    Article  Google Scholar 

  5. Bannayan, M., & Hoogenboom, G. (2009). Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research,111, 290–302.

    Article  Google Scholar 

  6. Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of The Total Environment,545–546, 227–235.

    PubMed  Article  CAS  Google Scholar 

  7. Basso, B., & Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. In D. L. Sparks (Ed.), Advances in agronomy (pp. 201–255). Cambridge, MA, USA: Academic Press.

    Google Scholar 

  8. Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature,525(7567), 47–55.

    CAS  PubMed  Article  Google Scholar 

  9. Bertheloot, J., Martre, P., & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology,148(3), 1707–1720.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Brown, J. N., Hochman, Z., Holzworth, D., & Horan, H. (2018). Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology,260–261, 247–254.

    Article  Google Scholar 

  11. Chiericati, M., Morari, F., Sartori, L., Ortiz, B., Perry, C., & Vellidis, G. (2007). Delineating management zones to apply site-specific irrigation in the Venice lagoon watershed. In J. V. Stafford (Ed.), Precision agriculture ’07. Proceedings of the 6th European conference on precision agriculture (pp. 599–605). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  12. Chung, B., Girma, K., Raun, W. R., & Solie, J. B. (2010). Changes in response indices as a function of time in winter wheat. Journal of Plant Nutrition,33(6), 796–808.

    CAS  Article  Google Scholar 

  13. Colaço, A. F., & Bramley, R. G. V. (2018). Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research,218, 126–140.

    Article  Google Scholar 

  14. Crain, J. L., Waldschmidt, K. M., & Raun, W. R. (2013). Small-scale spatial variability in winter wheat production. Communications in Soil Science and Plant Analysis,44(19), 2830–2838.

    CAS  Article  Google Scholar 

  15. Dalla Marta, A., Orlando, F., Mancini, M., Guasconi, F., Motha, R., Qu, J., et al. (2015). A simplified index for an early estimation of durum wheat yield in Tuscany (Central Italy). Field Crops Research,170, 1–6.

    Article  Google Scholar 

  16. DGR 1150/2011 Programma d’azione per le zone vulnerabili ai nitrati del Veneto (Action Programme for Nitrate Vulnerable Zones in Veneto). Bur n. 61, 16/08/2011, Venezia, (IT): Giunta regionale del Veneto.

  17. Diacono, M., Castrignanò, A., Troccoli, A., De Benedetto, D., Basso, B., & Rubino, P. (2012). Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Research,131, 49–62.

    Article  Google Scholar 

  18. Dusadeerungsikul, P. O., Liakos, V., Morari, F., Nof, S. Y., & Bechar, A. (2020). Smart action. In A. Castrignanò, G. Buttafuoco, R. Khosla, A. M. Mouazen, D. Moshou, & O. Naud (Eds.), Agricultural Internet of things and decision support for precision smart farming (pp. 225–277). London, UK: Academic Press.

    Google Scholar 

  19. EC-Council Directive, 1991. Council Directive 91/676/EEC Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources.

  20. Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research,124(1), 74–84.

    Article  Google Scholar 

  21. Fang, H., Liang, S., & Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM–CERES–maize model for corn yield estimation. International Journal of Remote Sensing,32(4), 1039–1065.

    Article  Google Scholar 

  22. Ferrise, R., Moriondo, M., & Bindi, M. (2011). Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region. Natural Hazards and Earth System Science,11(5), 1293–1302.

    Article  Google Scholar 

  23. Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Climate Research,65, 7–21.

    Article  Google Scholar 

  24. Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M., & Martre, P. (2010). Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research,117(2–3), 245–257.

    Article  Google Scholar 

  25. Franzen, D. W., & Peck, T. R. (1993). Soil sampling for variable rate fertilization. In R. G. Hoeft (Ed.), Proceedings of illinois fertilizer conference (pp. 81–90). Urbana, IL, USA: University of Illinois, Cooperative Extension Service.

    Google Scholar 

  26. Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA). Agronomy Journal,96(1), 100–108.

    Article  Google Scholar 

  27. Girma, K., Holtz, S. L., Arnall, D. B., Fultz, L. M., Hanks, T. L., Lawles, K. D., et al. (2007). Weather, fertilizer, previous year yield, and fertilizer levels affect ensuing year fertilizer response of wheat. Agronomy Journal,99(6), 1607–1614.

    CAS  Article  Google Scholar 

  28. Hansen, J., Challinor, A., Ines, A., Wheeler, T., & Moron, V. (2006). Translating climate forecasts into agricultural terms: Advances and challenges. Climate Research,33, 27–41.

    Article  Google Scholar 

  29. Hansen, J. W., & Indeje, M. (2004). Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agricultural and Forest Meteorology,125(1–2), 143–157.

    Article  Google Scholar 

  30. Hatfield, J. L., Kanemasu, E. T., Asrar, G., Jackson, R. D., Pinter, P. J., Reginato, R. J., et al. (1986). Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing,6, 167–175.

    Article  Google Scholar 

  31. Heege, H. J. (2013). Site-specific fertilizing. In H. J. Heege (Ed.), Precision in crop farming (pp. 193–271). Dordrecht, NL: Springer.

    Google Scholar 

  32. Holland, K. H., & Schepers, J. S. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal,102(5), 1415–1424.

    Article  Google Scholar 

  33. Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculture,14(1), 71–85.

    Article  Google Scholar 

  34. Hornung, A., Khosla, R., Reich, R., & Westfall, D. G. (2003). Evaluation of site-specific management zones: Grain yield and nitrogen use efficiency. In J. Stafford & A. Werner (Eds.), Precision agriculture proceedings of the 3rd European conference on precision agriculture (pp. 297–302). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  35. Huang, Y., Zhu, Y., Li, W., Cao, W., & Tian, Y. (2013). Assimilating remotely sensed information with the wheatgrow model based on the ensemble square root filter for improving regional wheat yield forecasts. Plant Production Science,16(4), 352–364.

    Article  Google Scholar 

  36. Ines, A. V., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment,138, 149–164.

    Article  Google Scholar 

  37. Jamieson, P. D., & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research,68(1), 21–29.

    Article  Google Scholar 

  38. Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: A mechanistic model of wheat response to environmental variation. European Journal of Agronomy,8, 161–179.

    Article  Google Scholar 

  39. Johnson, G. V., & Raun, W. R. (2003). Nitrogen response index as a guide to fertilizer management. Journal of Plant Nutrition,26(2), 249–262.

    CAS  Article  Google Scholar 

  40. Jones, C. A., & Kiniry, J. R. (1986). CERES-maize: A simulation model of maize growth and development. College Station, TX, USA: Texas A&M University Press.

    Google Scholar 

  41. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Zeitschrift für Analytische Chemie,22, 366–382.

    Article  Google Scholar 

  42. Lawless, C., & Semenov, M. A. (2005). Assessing lead-time for predicting wheat growth using a crop simulation model. Agricultural and Forest Meteorology,135(1–4), 302–313.

    Article  Google Scholar 

  43. Li, F., Gnyp, M. L., Jia, L., Miao, Y., Yu, Z., Koppe, W., et al. (2008). Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Research,106(1), 77–85.

    Article  Google Scholar 

  44. Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., et al. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition,24(6), 885–898.

    CAS  Article  Google Scholar 

  45. Marletto, V., Ventura, F., Fontana, G., & Tomei, F. (2007). Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. Agricultural and Forest Meteorology,147(1–2), 71–79.

    Article  Google Scholar 

  46. Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R., & Triboi, E. (2006). Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy,25(2), 138–154.

    CAS  Article  Google Scholar 

  47. Mishra, N., Prodhomme, C., & Guemas, V. (2019). Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe. Climate Dynamics,52(7–8), 4207–4225.

    Article  Google Scholar 

  48. Morari, F. (2010). Sud-project 2. Crop rotation and fertilisation. Action 2: Evaluation at the farm scale. Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 37–48). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

    Google Scholar 

  49. Morari, F., Zanella, V., Sartori, L., Visioli, G., Berzaghi, P., & Mosca, G. (2018). Optimising durum wheat cultivation in North Italy: Understanding the effects of site-specific fertilization on yield and protein content. Precision Agriculture,19(2), 257–277.

    Article  Google Scholar 

  50. Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. (2017). Chapter four. Delineation of soil management zones for variable rate fertilization: A review. Advances in Agronomy,143, 175e245.

    Google Scholar 

  51. Pavan, V., & Doblas-Reyes, F. J. (2013). Calibrated multi-model ensemble summer temperature predictions over Italy. Climate Dynamics,41(7–8), 2115–2132.

    Article  Google Scholar 

  52. Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy,67, 1–85.

    Article  Google Scholar 

  53. Porter, J. R., Challinor, A. J., Henriksen, C. B., Howden, S. M., Martre, P., & Smith, P. (2019). Invited review: Intergovernmental Panel on Climate Change, agriculture, and food—A case of shifting cultivation and history. Global Change Biology,25(8), 2518–2529.

    PubMed  Article  Google Scholar 

  54. Prudnikova, E., Savin, I., Vindeker, G., Grubina, P., Shishkonakova, E., & Sharychev, D. (2019). Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sensing,11, 1932.

    Article  Google Scholar 

  55. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal,93(1), 131–138.

    Article  Google Scholar 

  56. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal,94, 815–820.

    Article  Google Scholar 

  57. Raun, W. R., Solie, J. B., & Stone, M. L. (2011). Independence of yield potential and crop nitrogen response. Precision Agriculture,12(4), 508–518.

    Article  Google Scholar 

  58. Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis,36(19–20), 2759–2781.

    CAS  Article  Google Scholar 

  59. Rodriguez, D., de Voil, P., Hudson, D., Brown, J. N., Hayman, P., Marrou, H., et al. (2018). Predicting optimum crop designs using crop models and seasonal climate forecasts. Scientific Reports,8(1), 2231.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Samborski, S. M., Gozdowski, D., Stępień, M., Walsh, O. S., & Leszczyńska, E. (2016). On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. European Journal of Agronomy,74, 56–67.

    Article  Google Scholar 

  61. Sartori, L. (2010). Sud-project 3. Precision agriculture and conservation agriculture. Action 1: Precision agriculture. In Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 67–76). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

    Google Scholar 

  62. Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V. C., & Lory, J. A. (2005). Field-scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal,97(2), 452–461.

    Article  Google Scholar 

  63. Scudiero, E., Teatini, P., Manoli, G., Braga, F., Skaggs, T. H., & Morari, F. (2018). Workflow to establish time-specific zones in precision agriculture by spatiotemporal integration of plant and soil sensing data. Agronomy,8, 253.

    Article  Google Scholar 

  64. Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic change,35(4), 397–414.

    Article  Google Scholar 

  65. Semenov, M. A., & Doblas-Reyes, F. J. (2007). Utility of dynamical seasonal forecasts in predicting crop yield. Climate Research,34(1), 71–81.

    Article  Google Scholar 

  66. Shin, D. W., Baigorria, G. A., Lim, Y.-K., Cocke, S., LaRow, T. E., O’Brien, J. J., et al. (2010). Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States. Journal of Applied Meteorology and Climatology,49(4), 592–603.

    Article  Google Scholar 

  67. Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, second edition. Agriculture handbook, USDA n. 436. Natural Resources Conservation Service. Washington, DC, USA: US Government Printing Office.

    Google Scholar 

  68. Solie, J. B., Raun, W. R., & Stone, M. L. (1999). Submeter spatial variability of selected soil and bermudagrass production variables. Soil Science Society of America Journal,63(6), 1724–1733.

    CAS  Article  Google Scholar 

  69. Stone, M. L., Solie, J. B., Raun, W. R., Whimey, R. W., Taylor, S. L., & Ringa, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE,39, 1623–1631.

    Article  Google Scholar 

  70. Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H., Mínguez, M. I., Semenov, M. A., et al. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy,82, 144–162.

    Article  Google Scholar 

  71. Thorp, K. R., Hunsaker, D. J., & French, A. N. (2010). Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Transactions of the ASABE,53(1), 251–262.

    Article  Google Scholar 

  72. Vazifedoust, M., Van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2009). Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. International Journal of Remote Sensing,30(10), 2523–2545.

    Article  Google Scholar 

  73. Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., et al. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy,15(1), 136–144.

    Article  Google Scholar 

  74. Visioli, G., Bonas, U., Cortivo, D., Pasini, C., Marmiroli, G., Mosca, N., et al. (2018). Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. Journal of the Science of Food and Agriculture,98(6), 2360–2369.

    CAS  PubMed  Article  Google Scholar 

  75. Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., et al. (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology,24(11), 5072–5083.

    PubMed  Article  Google Scholar 

  76. Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., et al. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications. https://doi.org/10.1038/s41467-018-06525-2.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Weisheimer, A., & Palmer, T. N. (2014). On the reliability of seasonal climate forecasts. Journal of The Royal Society Interface,11(96), 20131162.

    CAS  PubMed Central  Article  Google Scholar 

  78. Wibawa, W. D., Dludlu, D. L., Swenson, L. J., Hopkins, D. G., & Dahnke, W. C. (1993). Variable fertilizer application based on yield goal, soil fertility, and soil map unit. Journal of Production Agriculture,6(2), 255–261.

    Article  Google Scholar 

  79. Yao, F., Tang, Y., Wang, P., & Zhang, J. (2015). Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Physics and Chemistry of the Earth, Parts A/B/C,87, 142–152.

    Article  Google Scholar 

  80. Zanella, V., Ortiz, B. V., Thorp, K., Morari, F., Mosca, G., & Hoogenboom, G. (2015). Combining crop sensing and simulation modeling to assess within-field corn nitrogen stress. In J. V. Stafford (Ed.), Precision agriculture’15 Proceedings of the 10th European conference on precision agriculture (pp. 391–398). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  81. Zinyengere, N., Mhizha, T., Mashonjowa, E., Chipindu, B., Geerts, S., & Raes, D. (2011). Using seasonal climate forecasts to improve maize production decision support in Zimbabwe. Agricultural and Forest Meteorology,151(12), 1792–1799.

    Article  Google Scholar 

Cited website

  1. www.agerborsamerci.it.

Download references

Acknowledgements

Research supported by Progetto AGER, Grant No. 2017–2194. The authors are grateful to Dr. Franco Gasparini and Mr Efrem Destro for the technical assistance provided during the field experiment, and Mr Giacomo Trombi for the support granted during the modelling phase.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Morari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morari, F., Zanella, V., Gobbo, S. et al. Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat. Precision Agric (2020). https://doi.org/10.1007/s11119-020-09730-6

Download citation

Keywords

  • Durum wheat
  • Fertilization
  • Nitrogen
  • Proximal Sensing
  • Variable rate