Advertisement

Precision Agriculture

, Volume 20, Issue 2, pp 335–347 | Cite as

Hyperspectral remote sensing of grapevine drought stress

  • M. ZovkoEmail author
  • U. Žibrat
  • M. Knapič
  • M. Bubalo Kovačić
  • D. Romić
Article
  • 261 Downloads

Abstract

In karst landscapes stony soils have little water holding capacity; the rational use of water for irrigation therefore plays an important management role. Because the water holding capacity is not homogenous, precision agriculture approaches would enable better management decisions. This research was carried out in an experimental vineyard grown in an artificially transformed karst terrain in Dalmatia, Croatia. The experimental design included four water treatments in three replicates: (1) fully irrigated, based on 100% crop evapotranspiration (ETc) application (N100); (2 and (3) deficit irrigation, based on 75% and 50% ETc applications (N75 and N50, respectively); and (4) non-irrigated (N0). Hyperspectral images of grapevines were taken in the summer of 2016 using two spectral-radiance (W sr−1 m−2) calibrated cameras, covering wavelengths from 409 to 988 nm and 950 to 2509 nm. The four treatments were grouped into a new set consisting of: (1) drought (N0); and (2) irrigated (the remaining three treatments: N100, N75, and N50). The images were analyzed using Partial Least Squares-Discriminant Analysis (PLS-DA), and treatments were classified using PLS-Single Vector Machines (PLS-SVM). PLS-SVM demonstrated the capability to determine levels of grapevine drought or irrigated treatments with an accuracy of more than 97%. PLS-DA identified relevant wavelengths, which were linked to O–H, C–H, and N–H stretches in water, carbohydrates and proteins. The study presents the applicability of hyperspectral imaging for drought stress assessment in grapevines, even though temporal variability needs to be taken into account for early detection.

Keywords

Vineyard Irrigation Water stress Hyperspectral imagery Soil Precision agriculture 

Notes

Acknowledgments

This research has been partially supported in part by Croatian Science Foundation under the Project IP-2016-06-8379, SENSIRRIKA - Advanced sensor systems for precision irrigation in karst landscape, and partially by the Croatian Waters, and by the Slovenian Research Agency (ARRS), Grant P4-0072.

References

  1. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization.Google Scholar
  2. Al-Yahyai, R., Schaffer, B., Davies, F. S., & Muñoz-Carpena, R. (2006). Characterization of soil–water retention of a very gravelly loam soil varied with determination method. Soil Science, 17, 85–93.CrossRefGoogle Scholar
  3. Ashraf, M. (2009). Inducing drought tolerance in plants. Biotechnology Advances, 28(1), 169.CrossRefGoogle Scholar
  4. Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part I: Linear models. PLS-DA. Analytical Methods, 5, 3790–3798.CrossRefGoogle Scholar
  5. Behman, J., Steinrücken, J., & Plümer, L. (2014). Detection of early plant stress responses in hyperspectral images. ISPRS Journal of Photogrammetry and Remote Sensing, 93, 98–111.CrossRefGoogle Scholar
  6. Belousov, A. I., Verzakov, S. A., & von Frese, J. (2002). Applicational aspects of support vector machines. Journal of Chemometrics, 16, 482–489.CrossRefGoogle Scholar
  7. Cao, Q., Zhegalova, N. G., Wang, S. T., Akers, W. J., & Berezin, M. Y. (2013). Multispectral imaging in the extended near-infrared window based on endogenous chromophores. Journal of Biomedical Optics, 18(10), 101318.CrossRefGoogle Scholar
  8. Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560.CrossRefGoogle Scholar
  9. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30(3), 239–264.CrossRefGoogle Scholar
  10. Chong, I. G., & Jun, C. H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112.CrossRefGoogle Scholar
  11. Clevers, J. G. P. W., Kooistra, L., & Schaepman, M. E. (2010). Estimating canopy water content using hyperspectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 12, 119–125.CrossRefGoogle Scholar
  12. Coppola, A., Dragonetti, G., Comegna, A., Lamaddalena, N., Caushi, B., Haikal, M. A., et al. (2013). Measuring and modeling water content in stony soils. Soil & Tillage Research, 128, 9–22.CrossRefGoogle Scholar
  13. Diago, M. P., Pou, A., Millan, B., Tardaguila, J., Fernandes, A. M., & Melo-Pinto, P. (2014). Assessment of grapevine water status from hyperspectral imaging of leaves. Acta Horticulturae (ISHS), 1038, 89–96.CrossRefGoogle Scholar
  14. Du, Y., Chang, C. I., Ren, H., Chang, C. C., & Jensen, J. O. (2004). New hyperspectral discrimination measure for spectral characterization. Optical Engineering, 43(8), 1777–1786.CrossRefGoogle Scholar
  15. Elsayed, S., Mistele, B., & Schmidhalter, U. (2011). Can changes in leaf water potential be assessed spectrally? Functional Plant Biology, 38, 523–533.CrossRefGoogle Scholar
  16. Fiorani, F., Rascher, U., Jahnke, S., & Schurr, U. (2012). Imaging plants dynamics in heterogenic environments. Current Opinion in Biotechnology, 23(2), 227–235.CrossRefGoogle Scholar
  17. Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsal, J. (2006). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24(2), 115–127.  https://doi.org/10.1007/s00271-005-0015-7.CrossRefGoogle Scholar
  18. Govender, M., Dye, P. J., Weiersbye, I. M., Witkowski, E. T. F., & Ahmed, F. (2009). Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 35, 741–752.CrossRefGoogle Scholar
  19. Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2011). Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture, 77(2), 155–160.CrossRefGoogle Scholar
  20. Kim, D. M., Zhang, H., Zhou, H., Du, T., Wu, Q., Mockler, T. D., et al. (2015). Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis. Scientific Reports, 5, 15919.CrossRefGoogle Scholar
  21. Li, X., Sun, C., Zhou, B., & He, Y. (2015). Determination of hemicellulose, cellulose and lignin in Moso bamboo by near infrared spectroscopy. Scientific Reports, 5, 17210.  https://doi.org/10.1038/srep17210.CrossRefGoogle Scholar
  22. Mahesh, S., Manickavasagan, A., Jayas, D. S., Paliwal, J., & White, N. D. G. (2008). Feasibility of near-infrared hyperspectral imaging to differentiate Canadian wheat classes. Biosystems Engineering, 101(1), 50–57.CrossRefGoogle Scholar
  23. Mahlein, A.-K., Steiner, U., Hillnhütter, C., Dehne, H.-W., & Oerke, E.-C. (2012). Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods, 8, 3.CrossRefGoogle Scholar
  24. Marsal, J., Mata, M., Arbones, A., Del Campo, J., Girona J., & Lopez , G. (2008). Factors involved in alleviating water stress by partial crop removal in pear trees. Tree Physiology, 28, 1375–1382.CrossRefGoogle Scholar
  25. Matese, A., & Di Genaro, S. F. (2014). Technology in precision viticulture: a state of the art review. International Journal of Wine Research, 7, 69–81.Google Scholar
  26. Mehuys, G. R., Stolzy, L. H., & Letey, J. (1975). Temperature distributions under stones submitted to a diurnal heat wave. Soil Science, 120, 437–441.CrossRefGoogle Scholar
  27. Moss, R. A., & Loomis, W. E. (1952). Absorption spectra of leaves. Plant Physiology, 27(2), 370–391.CrossRefGoogle Scholar
  28. Munné-Bosch, S., & Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology, 31(3), 203–216.CrossRefGoogle Scholar
  29. Pennisi, E. (2008). The blue revolution, drop by drop, gene by gene. Science, 320(5873), 171–173.CrossRefGoogle Scholar
  30. Piqueras, S., Burger, J., Tauler, R., & de Juan, A. (2012). Relevant aspects of quantification and sample heterogeneity in hyperspectral image resolution. Chemometrics and Intelligent Laboratory Systems, 117, 169–182.CrossRefGoogle Scholar
  31. Qiao, J., Ngadi, M. O., Wang, N., GariePy, C., & Prasher, S. O. (2007). Pork quality and marbling level assessment using a hyperspectral imaging system. Journal of Food Engineering, 83, 10–16.CrossRefGoogle Scholar
  32. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. https://www.R-project.org/.
  33. Ravikanth, L., Singh, C. B., Jayas, D. S., & White, N. D. G. (2015). Classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosystems Engineering, 135, 73–86.CrossRefGoogle Scholar
  34. Rodriguez-Perez, J. R., Riano, D., Carlisle, E., Ustin, S., & Smart, D. R. (2007). Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. American Journal of Enology and Viticulture, 58(3), 302–317.Google Scholar
  35. Römer, C., Wahabzada, M., Ballvora, A., Pinto, F., Rossini, M., Panigada, C., et al. (2012). Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology, 39(11), 878–890.CrossRefGoogle Scholar
  36. Romic, M., Zovko, M., Romic, D., & Bakic, H. (2012). Improvement of vineyard management of Vitis vinifera L cv Grk in the Lumbarda Vineyard region (Croatia). Communications in Soil Science and Plant Analysis, 43, 209–218.  https://doi.org/10.1080/00103624.2011.638557.CrossRefGoogle Scholar
  37. Rumpf, T., Mahlein, K., Steiner, A., Oerke, U., Dehne, H., & Pluemer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and electronics in agriculture, 74(1), 91–99.CrossRefGoogle Scholar
  38. Steele, M. R., Gitelson, A. A., Rundquist, D. C., & Merzlyak, M. N. (2009). Nondestructive estimation of anthocyanin content in grapevine leaves. American Journal of Enology and Viticulture, 60, 87–92.Google Scholar
  39. Susič, N., Žibrat, U., Širca, S., Strajnar, P., Razinger, J., Knapič, M., et al. (2018). Discrimination between abiotic and biotic drought stress in tomatoes using hyperspectral imaging. Sensors and actuators B: Chemical, 273, 842–852.  https://doi.org/10.1016/j.snb.2018.06.121.CrossRefGoogle Scholar
  40. Vadez, V., Kholova, J., Choudhary, S., Zindy, P., Terrier, M., Krishnamurth, L., et al. (2011). Responses to increased moisture stress and extremes: Whole plant response to drought under climate change. In S. S. Yadav, R. Redden, J. L. Hatfield, H. Lotze-Campen, & A. E. Hall (Eds.), Crop adaptation to climate change (pp. 186–197). Orford: Chichester-Wiley-Blackwell.CrossRefGoogle Scholar
  41. Vigneau, N., Ecarnot, M., Rabatel, G., & Roumet, P. (2011). Potential of field hyperspectral imaging as a non destructive method to assess leaf nitrogen content in wheat. Field Crops Research, 122(1), 25–31.CrossRefGoogle Scholar
  42. Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.-C., & Kersting, K. (2015). Metro maps of plant disease dynamics automated mining of differences using hyperspectral images. PLoS ONE, 10(1), e0116902.CrossRefGoogle Scholar
  43. Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.-C., & Kersting, K. (2016). Plant phenotyping using probabilistic topic models: uncovering the hyperspectral language of plants. Scientific Reports, 6, 22482.CrossRefGoogle Scholar
  44. Ximénez-Embún, M. G., Ortego, F., & Castañera, P. (2016). Drought-stressed tomato plants trigger bottom-up effects on the invasive Tetranychus evansi. PLoS ONE, 11, e0145275.CrossRefGoogle Scholar
  45. Yin, W., Zhang, C., Zhu, H., Zhao, Y., & He, Y. (2017). Application of near-infrared hyperspectral imaging to discriminate different geographical origins of Chinese wolfberries. PLoS ONE, 12, e0180534.CrossRefGoogle Scholar
  46. Zarco-Tejada, P. J., Berjon, A., Lopez-Lozano, R., Miller, J. R., Martın, P., Cachorro, V., et al. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99, 271–287.CrossRefGoogle Scholar
  47. Zovko, M., Žibrat, U., Knapič, M., Bubalo, M., Romić, M., & Romić, D. (2017). Hyperspectral imagery as a supporting tool in precision irrigation of karst landscapes. Advances in Animal Biosciences, 8(2), 578–582.  https://doi.org/10.1017/S2040470017000991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  2. 2.Agricultural Institute of SloveniaLjubljanaSlovenia

Personalised recommendations