Precision Agriculture

, Volume 20, Issue 2, pp 313–334 | Cite as

Soil state variables in space and time: first steps towards linking proximal soil sensing and process modelling

  • Evelyn WallorEmail author
  • Kurt-Christian Kersebaum
  • Karsten Lorenz
  • Robin Gebbers


The benefits of process-oriented modelling for management recommendations at the field scale are constrained by high spatial variability of soil properties and lack of dense information on soil types, variability and patterns. Geo-electrical mapping provides dense information about the soil, but sensor output is influenced by several factors. The agro-ecosystem model HERMES simulates nitrogen and water flow in the soil–plant–atmosphere system and was applied to 60 soil sampling points from a well-documented field with a wide range of soil texture in North Rhine-Westphalia, Germany. Validation of HERMES resulted in satisfactory root mean square errors for yield (0.62 t ha−1), water (36.08 mm) and nitrogen in the soil (74.93 kg ha−1) over the whole simulation period of 3 years. For the same field, values of electrical conductivity (ECa) ranged from 20 to 90 mS m−1. Clay and sand contents of three soil layers were highly correlated with the measured ECa. Derived regression models showed R2 values between 0.69 and 0.85, and cross-validation of the statistical equations resulted in a very good reflection of observed soil texture for two of the three soil layers. The subsequent calculation of soil texture at the mapping points of ECa produced an improved resolution of this key attribute to initialize model simulation. The temporal and spatial patterns derived from this work linking the ECa sensor to a process model allow the designation of sub-areas within the field according to the soil nitrogen and water supply. However, results could be improved by considering more than one up-scaled soil property for process-modelling.


Soil variability Soil sensing Process models Site-specific management 



This work was conducted within the Project I4S ( which is part of the BonaRes programme funded by the German Federal Ministry of Education and Research (BMBF), Grant Number 031A564 J.


  1. Ad hoc AG Boden. (2005). Bodenkundliche Kartieranleitung (5th ed.) (German Soil Mapping Guide). Stuttgart, Germany: Schweitzerbart.Google Scholar
  2. Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71–91.CrossRefGoogle Scholar
  3. Batjes, N. H. (1996). Development of a world data set of soil water retention properties using pedo-transfer rules. Geoderma, 71, 31–52.CrossRefGoogle Scholar
  4. Bivand, R., & Lewin-Koh, N. (2016). maptools: Tools for reading and handling spatial objects. R package version 0.8-39. Accessed October 1, 2018, from
  5. Bivand, R. S., Pebesma, E. J., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R. New York, USA: Springer.CrossRefGoogle Scholar
  6. Bivand, R., & Rundel, C. (2016). rgeos: interface to geometry engine—Open Source (GEOS). R package version 0.3-19. Accessed October 1, 2018, from
  7. Boyle, D. P., Gupta, H. V., & Sorooshian, S. (2000). Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resources Research, 36(12), 3663–3674.CrossRefGoogle Scholar
  8. Brevik, E. C. (2012). Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties. Soil Horizons, 53(2), 32–37.CrossRefGoogle Scholar
  9. Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., et al. (2013). The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Science, 368(20130164), 1–13.Google Scholar
  10. Fox, D. G. (1981). Judging air quality model performance. Bulletin of the American Meteorological Society, 62(5), 599–609.CrossRefGoogle Scholar
  11. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. BioScience, 53(4), 341–356.CrossRefGoogle Scholar
  12. Gebbers, R., Dworak, V., Mahns, B., Weltzien, C., Büchele, D., Gornushkin, I., et al. (2016). Integrated approach to site-specific soil fertility management. In Proceedings of the 13th international conference on precision agriculture.
  13. Geesing, D., Diacono, M., & Schmidhalter, U. (2014). Site-specific effects of variable water supply and nitrogen fertilization on winter wheat. Journal of Plant Nutrition and Soil Science, 177, 509–523.CrossRefGoogle Scholar
  14. Grigeria, M. S., Drijber, R. A., Eskridge, K. M., & Wienhold, B. J. (2006). Soil microbial biomass relationships with organic matter fractions in a Nebraska corn field mapped using apparent electrical conductivity. Soil Science Society of America Journal, 70, 1480–1488.CrossRefGoogle Scholar
  15. Heil, K., & Schmidhalter, U. (2017). Improved evaluation of field experiments by accounting for inherent soil variability. European Journal of Agronomy, 89, 1–15.CrossRefGoogle Scholar
  16. Johnson, C. K., Eskridge, K. M., & Corwin, D. L. (2005). Apparent soil electrical conductivity: Applications for designing and evaluating field-scale experiments. Computers and Electronics in Agriculture, 46(1), 181–202.CrossRefGoogle Scholar
  17. Kersebaum, K. C. (1995). Application of a simple management model to simulate water and nitrogen dynamics. Ecological Modelling, 81, 145–156.CrossRefGoogle Scholar
  18. Kersebaum, K. C. (2007). Modelling nitrogen dynamics in soil–crop systems with HERMES. Nutrient Cycling in Agroecosystems, 77(1), 39–52.CrossRefGoogle Scholar
  19. Kersebaum, K. C. (2011). Special features of the HERMES model and additional procedures for parameterization, calibration, validation, and applications. In L. R. Ahuja & L. Ma (Eds.), Methods of introducing system models into agricultural research (pp. 65–94). Madison, WI, USA: ASA, CSSA, SSSA.Google Scholar
  20. Kersebaum, K. C., Lorenz, K., Reuter, H. I., Schwarz, J., Wegehenkel, M., & Wendroth, O. (2005). Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes. Physics and Chemistry of the Earth, 30, 59–67.CrossRefGoogle Scholar
  21. Kersebaum, K. C., Lorenz, K., Reuter, H. I., & Wendroth, O. (2002). Modelling crop growth and nitrogen dynamics for advisory purposes regarding spatial variability. In L. R. Ahuja & L. Ma (Eds.), Agricultural system models in field research and technology transfer (pp. 229–252). Boca Raton, FL, USA: CRC Press LLC.Google Scholar
  22. Kersebaum, K. C., & Richter, J. (1991). Modelling nitrogen dynamics in a soil–plant system with a simple model for advisory purpose. Fertilizer Research, 27, 273–281.CrossRefGoogle Scholar
  23. Korsaeth, A. (2003). Relations between electrical conductivity, soil texture and chemical properties on a clay soil in Southern Norway. In Apelsvoll Research Centre (Eds.), DIAS Report Plant Production No. 100 (pp. 139–142). Kapp, Norway: The Norwegian Crop Research Institute.Google Scholar
  24. Kravchenko, A. N., Harrigan, T. M., & Bailey, B. B. (2005). Soil electrical conductivity as a covariate to improve the efficiency of field experiments. Transactions of the ASAE, 48(4), 1353–1357.CrossRefGoogle Scholar
  25. Lawes, R. A., & Bramley, R. G. V. (2012). A simple method for the analysis of on-farm strip trials. Agronomy Journal, 104(2), 371–377.CrossRefGoogle Scholar
  26. Lesch, S. M., Corwin, D. L., & Robinson, D. A. (2005). Apparent soil electrical conductivity mapping as an agricultural management tool in arid zone soils. Computers and Electronics in Agriculture, 46, 351–378.CrossRefGoogle Scholar
  27. Liu, J., You, L., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A. J. B., et al. (2010). A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Science of United States of America, 107(17), 8035–8040.CrossRefGoogle Scholar
  28. Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., et al. (2015). Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21, 911–925.CrossRefGoogle Scholar
  29. Mertens, F. M., Pätzold, S., & Welp, G. (2008). Spatial heterogeneity of soil properties and its mapping with apparent electrical conductivity. Journal of Plant Nutrition and Soil Science, 171, 146–154.CrossRefGoogle Scholar
  30. Nanni, M. R., Pinheiro Povh, F., Melo Demattê, J. A., de Oliveira, R. B., Chicati, M. L., & Cezar, E. (2011). Optimum size in grid soil sampling for variable rate application in site-specific management. Scientia Agricola, 68(3), 386–392.CrossRefGoogle Scholar
  31. Pätzold, S., Mertens, F. M., Bornemann, L., Koleczek, B., Franke, J., Feilhauer, H., et al. (2008). Soil heterogeneity at the field scale: a challenge for precision crop rotation. Precision Agriculture, 9, 367–390.CrossRefGoogle Scholar
  32. Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30, 683–691.CrossRefGoogle Scholar
  33. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Accessed October 1, 2018, from
  34. Rudolph, S., van der Kruk, J., von Hebel, C., Ali, M., Herbst, M., Montzka, C., et al. (2015). Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma, 241–242, 262–271.CrossRefGoogle Scholar
  35. Schmidhalter, U., Maidel, F. X., Heuwinkel, H., Demmel, M., Auernhammer, H., Noack, P. O., et al. (2008). Precision farming—adaptation of land use management to small scale heterogeneity. In P. Schröder, J. Pfadenhauer, & J. C. Munch (Eds.), Perspectives for agroecosystem management (pp. 121–200). Amsterdam, The Netherlands: Elsevier.CrossRefGoogle Scholar
  36. Tarr, A. B., Moore, K. J., Bullock, D. G., Dixon, P. M., & Burras, C. L. (2005). Improving map accuracy of soil variables using soil electrical conductivity as a covariate. Precision Agriculture, 6(3), 255–270.CrossRefGoogle Scholar
  37. Torri, D., Poesen, J., Monaci, F., & Busconi, E. (1994). Rock fragment content and fine soil bulk density. CATENA, 23, 64–71.Google Scholar
  38. Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S. New York, USA: Springer.CrossRefGoogle Scholar
  39. Wallor, E., Kersebaum, K. C., Lorenz, K., & Gebbers, R. (2018a). A comprehensive dataset demonstrating the within-field variability of soil properties and crop growth conditions in northwestern Germany. Open Data Journal for Agricultural Research, 5, 1–10. (in press).CrossRefGoogle Scholar
  40. Wallor, E., Kersebaum, K. C., Ventrella, D., Bindi, M., Cammarano, D., Coucheney, E., et al. (2018b). The response of process-based agro-ecosystem models to within-field variability in site conditions. Field Crops Research, 228, 1–19.CrossRefGoogle Scholar
  41. Yilmaz, K. K., Gupta, H. V., & Wagener, T. (2008). A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Evelyn Wallor
    • 1
    Email author
  • Kurt-Christian Kersebaum
    • 1
  • Karsten Lorenz
    • 2
  • Robin Gebbers
    • 3
  1. 1.Leibniz Centre for Agricultural Landscape Research (ZALF)Institute of Landscape System AnalysisMünchebergGermany
  2. 2.Regional Farmers Association BrandenburgTeltowGermany
  3. 3.Department of Engineering for Crop ProductionLeibniz Institute for Agricultural Engineering and BioeconomyPotsdamGermany

Personalised recommendations