Skip to main content

Advertisement

Log in

Modeling and design of an injection dosing system for site-specific management using liquid fertilizer

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

A variable rate of fertilizer according to plant demand and placement (50–100 mm deep) beside roots are essential principles for improving nitrogen use efficiency in growing crops. The objective of this study was to develop an injection dosing system that aligns with site-specific management of nitrogen fertilizer. The implementation considered a process that combines soil perforation and liquid fertilizer injection, which improves fertilizer uptake by the plant. Soil punching can provide nutrients near the plant roots, causing minimal disturbance to roots, crop residues and soil. Liquid fertilizer injection synchronized with soil punching at a variable fertilizer rate was the central idea applied in the design. Based on these requirements, an innovative injection dosing unit was developed. The hydraulic system was modeled inside the Simulink environment, which is linked to Matlab. The program considered the hydraulic elements (primary dimensions) and liquid fertilizer application conditions (forward speed, inter-row spacing of crops and liquid fertilizer rate, source and nutrient concentration). The outputs (simulations of outlet flow, dosage, hydraulic pressure and hydraulic power demand) were essential estimates that assisted in analysis and design. In general, the simulations were analogous to the experimental measurements. Dosage control was applied along a representative range (5–18 ml cycle−1) that allowed application using a variable rate. The liquid fertilizer was injected during soil perforation, from 50 to 100 mm deep. These characteristics can help implement better practices for nutrient stewardship, which are especially relevant for nitrogen fertilization in growing crops, such as sugarcane fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, J., Colvin, T., Marley, S., & Dawelbeit, M. (1989). A point-injector applicator to improve fertilizer management. Applied Engineering in Agriculture, 5, 334–338. https://doi.org/10.13031/2013.26523.

    Article  Google Scholar 

  • Bautista, E. U., Koike, M., & Suministrado, D. C. (2001). Mechanical deep placement of nitrogen in wetland rice. Journal of Agricultural Engineering Research, 78(4), 333–346. https://doi.org/10.1006/jaer.2000.0675.

    Article  Google Scholar 

  • Bianchini, A., Valadão, D. D., Jr., Rosa, R. P., Colhado, F., & Daros, R. F. (2014). Soil chiseling and fertilizer location in sugarcane ratoon. Engenharia Agrícola, 34(1), 57–65. https://doi.org/10.1590/S0100-69162014000100007.

    Article  Google Scholar 

  • Boaretto, A. E., Cruz, A. P., & Luz, P. H. C. (1991). Adubo líquido: produção e uso no Brasil (Liquid fertilizers in Brazil: production and use). Campinas, SP, Brazil: Fundação Cargil. (in Portuguese).

    Google Scholar 

  • Campbell, C. M., Fulton, J. P., Wood, C. W., Mcdonald, T. P., & Zech, W. C. (2015). Utilizing nutrient over mass distribution patterns for assessment of Poultry litter spreaders. Transactions of the ASABE, 53(3), 659–666.

    Article  Google Scholar 

  • Cantarella, H., & Rossetto, R. (2010). Fertilizers for sugarcane. In L. A. B. Cortez (Ed.), Sugarcane bioethanol R&D for productivity and sustainability (First., pp. 405–422). São Paulo, Brazil: Blucher & Fapesp.

  • Castro, S. G. Q., Decaro, S. T., Franco, H. C. J., Magalhães, P. S. G., Garside, A., & Mutton, M. A. (2017). Best practices of nitrogen fertilization management for sugarcane under green cane trash blanket in Brazil. Sugar Tech, 19(1), 51–56. https://doi.org/10.1007/s12355-016-0443-0.

    Article  Google Scholar 

  • Chen, Y., & Ren, X. (2002). High performance tool for liquid manure injection. Soil and Tillage Research, 67(1), 75–83. https://doi.org/10.1016/S0167-1987(02)00057-0.

    Article  Google Scholar 

  • Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Chapter 8 recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. advances in agronomy (1st ed., Vol. 102). New York, United States: Elsevier. https://doi.org/10.1016/s0065-2113(09)01008-6

  • CONAB. (2017). Acompanhamento da safra de cana-de-açúcar: segundo levantamento (Monitoring of sugarcane harvest: the second survey). Retrieved April 14, 2018, from https://www.conab.gov.br/index.php/info-agro/safras/cana. (in Portuguese)

  • Costa, M. C. G., Vitti, G. C., & Cantarella, H. (2003). N-NH3 losses from nitrogen sources applied over unburned sugarcane straw. Revista Brasileira de Ciência do Solo, 27(4), 631–637. https://doi.org/10.1590/S0100-06832003000400007.

    Article  CAS  Google Scholar 

  • Dordas, C. (2015). Nutrien management perspectives in conservation agriculture. In M. Farooq & K. H. M. Siddique (Eds.), Farooq & SiddiqueConservation agriculture (book). (1st ed.). Berlin, Germany: Springer. https://doi.org/10.1007/978-3-319-11620-4

  • Fortes, C., Trivelin, P. C. O., & Vitti, A. C. (2012). Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, 189–198. https://doi.org/10.1016/j.biombioe.2012.03.011.

    Article  CAS  Google Scholar 

  • Fracetto, F. J. C., Fracetto, G. G. M., Bertini, S. C. B., Cerri, C. C., Feigl, B. J., & Siqueira Neto, M. (2017). Effect of agricultural management on N2O emissions in the Brazilian sugarcane yield. Soil Biology & Biochemistry, 109, 205–213. https://doi.org/10.1016/j.soilbio.2017.02.004.

    Article  CAS  Google Scholar 

  • Fulton, J. P., Shearer, S. A., Chabra, G., & Higgins, S. F. (2001). Performance assessment and model development of a variable-rate, spinner-disc fertilizer applicator. Transactions of the ASAE, 44(5), 1071–1081.

    Article  Google Scholar 

  • IPNI. (2017). 10 years of progress. International Plant Nutrition Institute. Retrieved April 09, 2018, from http://www.ipni.net/ipniweb/portal/pr2017.nsf/.

  • Kaliatka, A., Vaišnoras, M., & Valinčius, M. (2014). Modelling of valve induced water hammer phenomena in a district heating system. Computers & Fluids, 94, 30–36. https://doi.org/10.1016/j.compfluid.2014.01.035.

    Article  Google Scholar 

  • Karney, B. W., & Simpson, A. R. (2007). In-line check valves for water hammer control. Journal of Hydraulic Research, 45, 547–554. https://doi.org/10.1080/00221686.2007.9521790.

    Article  Google Scholar 

  • Knutson, A. L., & Van de Ven, J. D. (2016). Modelling and experimental validation of the displacement of a check valve in a hydraulic piston pump. International Journal of Fluid Power, 9776(April), 1–11. https://doi.org/10.1080/14399776.2016.1160718.

    Article  Google Scholar 

  • Korndörfer, G. H., Anderson, D. L., Mundim, V. C., & Simões, M. S. (1995). Produção de adubos fluidos para cana-de-. (Liquid fertilizer production for sugarcane). Revista STAB, 14(2), 25–29. (in Portuguese).

    Google Scholar 

  • Leal, M. R., Galdos, M. V., Scarpare, F. V., Seabra, J. E. A., Walter, A., & Oliveira, C. O. F. (2013). Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, 53, 11–19. https://doi.org/10.1016/j.biombioe.2013.03.007.

    Article  Google Scholar 

  • Liu, T. Q., Fan, D. J., Zhang, X. X., Chen, J., Li, C. F., & Cao, C. G. (2015). Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 184, 80–90. https://doi.org/10.1016/j.fcr.2015.09.011.

    Article  Google Scholar 

  • Magalhães, P. S. G., & Silva, M. J. (2013). Equipamento com princípio de puncionamento para aplicação localizada de adubo líquido em profundidade (Soil punching equipment for site-specific management of liquid fertilizer). Rio de Janeiro, Brazil: Instituto Nacional de Propriedade Industrial. Patent BR 1020130182133

  • Meng, H. B., Liu, Y., & Li, Y. (2012). Experiment on water hammer protection performances of the shuttle check valve in multi-pump parallel connection system. Applied Mechanics and Materials, 192, 37–41. https://doi.org/10.4028/www.scientific.net/AMM.192.37.

    Article  Google Scholar 

  • Mohanty, S. K., Singh, U., Balasubramanian, V., & Jha, K. P. (1999). Nitrogen deep-placement technologies for productivity, profitability, and environmental quality of rainfed lowland rice systems. Nutrient Cycling in Agroecosystems, 53(1), 43–57. https://doi.org/10.1023/A:1009731922431.

    Article  Google Scholar 

  • NBR-ISO-5167. (1994). Medição de vazão de fluidos por meio de instrumentos de pressãoparte 1 (Measurement of fluid flow by means of pressuredifferential devices—Part 1). Rio de Janeiro, Brazil: ABNT-Associação Brasileira de Normas Técnicas. (in Portuguese)

  • Niemoeller, B., Harms, H. H., & Lang, T. (2011). Injection of liquids into the soil with a high-pressure jet. Agricultural Engineering International: CIGR Journal, 13(2), 1–15.

    Google Scholar 

  • Nyord, T., Kristensen, E. F., Munkholm, L. J., & Jorgensen, M. H. (2010). Design of a slurry injector for use in a growing cereal crop. Soil and Tillage Research, 107(1), 26–35. https://doi.org/10.1016/j.still.2010.01.001.

    Article  Google Scholar 

  • Nyord, T., Søgaard, H. T., Hansen, M. N., & Jensen, L. S. (2008). Injection methods to reduce ammonia emission from volatile liquid fertilisers applied to growing crops. Biosystems Engineering, 100(2), 235–244. https://doi.org/10.1016/j.biosystemseng.2008.01.013.

    Article  Google Scholar 

  • Otto, R., Castro, S. A. Q., Mariano, E., Castro, S. G. Q., Franco, H. C. J., & Trivelin, P. C. O. (2016). Nitrogen use efficiency for sugarcane-biofuel production: What is next? BioEnergy Research, 1, 1–18. https://doi.org/10.1007/s12155-016-9763-x.

    Article  CAS  Google Scholar 

  • Prado, R. M., & Pancelli, M. A. (2006). Nutrição nitrogenada em soqueiras e a qualidade tecnológica da cana-de-Açúcar (Nitrogen fertilizer nutrition and technological quality of sugarcane). STAB, 25(2), 60–63.

    Google Scholar 

  • Prasertsak, P., Freney, J. R., Denmead, O. T., Saffigna, P. G., & Prove, B. G. (2002). Effect of fertilizer placement on nitrogen loss from sugarcane in tropical Queensland. Nutrient Cycling in Agroecosystems, 62(3), 229–239. https://doi.org/10.1023/A:1021279309222.

    Article  CAS  Google Scholar 

  • Silva, M. J., Franco, H. C. J., & Magalhães, P. S. G. (2017). Liquid fertilizer application to ratoon cane using a soil punching method. Soil & Tillage Research, 165, 279–285. https://doi.org/10.1016/j.still.2016.08.020.

    Article  Google Scholar 

  • Virk, S. S., Mullenix, D. K., Sharda, A., Hall, B. J., Wood, C. W., Fasina, O. O., et al. (2013). Case study: Distribution uniformity of a blended fertilizer applied using a variable-rate spinner-disc spreader. Applied Engineering in Agriculture, 29(5), 627–636. https://doi.org/10.13031/aea.29.9774.

    Article  Google Scholar 

  • Weber, C., & McCann, L. (2015). Adoption of nitrogen-efficient technologies by U.S. corn farmers. Journal of Environment Quality, 44(2), 391–401. https://doi.org/10.2134/jeq2014.02.0089.

    Article  CAS  Google Scholar 

  • Xu, H., Guang, Z. M., & Qi, Y. Y. (2011). Hydrodynamic characterization and optimization of Contra-push check valve by numerical simulation. Annals of Nuclear Energy, 38(6), 1427–1437. https://doi.org/10.1016/j.anucene.2011.01.013.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Council of Brazil (CNPq) for sponsorship (Processes 475855/2011-6) and scholarships to the authors (Processes 160123/2013-5 and 307362/2014-0), and FAPESP (Process 2014/1496-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.J., Magalhães, P.S.G. Modeling and design of an injection dosing system for site-specific management using liquid fertilizer. Precision Agric 20, 649–662 (2019). https://doi.org/10.1007/s11119-018-9602-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9602-5

Keywords

Navigation