Advertisement

Onion biomass monitoring using UAV-based RGB imaging

  • Rocio Ballesteros
  • Jose Fernando Ortega
  • David Hernandez
  • Miguel Angel Moreno
Article

Abstract

Biomass monitoring is one of the main pillars of precision farm management as it involves deeper knowledge about pest and weed status, soil quality, water stress, and yield prediction, among others. This research focuses on estimating crop biomass from high-resolution red, green, blue imaging obtained with an unmanned aerial vehicle. Onion, as one of the most cultivated vegetables, was studied for two seasons under non-controlled conditions in two commercial plots. Green canopy cover, crop height, and canopy volume (Vcanopy) were the predictor variables extracted from the geomatic products. Strong relationships were found between Vcanopy and dry leaf biomass and dry bulb biomass. Adjusted coefficient of determination (\({\text{R}}_{\text{adj}}^2\)) values were 0.76 and 0.95, respectively. Nevertheless, crop management practices and leaf depletion at vegetative stages significantly affect the accuracy of the canopy model. These results suggested that obtaining biomass using aerial images are a good alternative to other sensors and platforms as they have high spatial and temporal resolution to perform high-quality biomass monitoring.

Keywords

Unmanned aerial vehicle Crop height Canopy volume Biomass estimation Precision agriculture Onion 

Notes

Acknowledgments

Authors would like to thank to National Government for funding AGL2014-59747-C2-1-R project and Regional Government of Castilla-La Mancha for funding PEII-2014-011-P project. We also wish to thank the Water User Association SORETA located in Tarazona de La Mancha, Albacete, Spain and the Irrigation Users’ Association of “Eastern Mancha” for their support of this work.

References

  1. Agisoft LLC. (2011). Agisoft PhotoScan User Manual.Google Scholar
  2. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration (guidelines for computing crop water requirements). FAO Irrigation and Drainage Paper 56. Rome: FAO.Google Scholar
  3. Andújar, D., Dorado, J., Fernández-Quintanilla, C., & Ribeiro, A. (2016). An approach to the use of depth cameras for weed volume estimation. Sensors.  https://doi.org/10.3390/s16070972.Google Scholar
  4. Ballesteros, R., Moreno, M. A., & Ortega, J. F. (2015a). Calibration and validation of thermal requirement models for characterizing phenological stages. Italian Journal of Agrometeorology-Rivista Italiana di Agrometeorologia, 3, 47–62. http://agrometeorologia.it/documenti/Rivista2015_3/calibration_and_validation_of_thermal_requirement_models_for_characterizing_phenological_stages.pdf.
  5. Ballesteros, R., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2015b). Characterization of Vitis vinifera L. canopy using unmanned aerial vehicle-based remote sensing and photogrammetry techniques. American Journal of Enology and Viticulture, 66(2), 120–129.  https://doi.org/10.5344/ajev.2014.14070.CrossRefGoogle Scholar
  6. Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014a). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture, 15(6), 579–592.  https://doi.org/10.1007/s11119-014-9355-8.CrossRefGoogle Scholar
  7. Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014b). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: Application to maize and onion crops of a semi-arid region in Spain. Precision Agriculture, 15, 593–614.  https://doi.org/10.1007/s11119-014-9357-6.CrossRefGoogle Scholar
  8. Barker, D. J., Ferraro, F. P., Nave, R. G., Sulc, R. M., Lopes, F., & Albrecht, K. A. (2010). Analysis of herbage mass and herbage acumulation rate using Gompertzs equations. Agronomy Journal, 102(2), 849–857.CrossRefGoogle Scholar
  9. Bendig, J. V. (2015). Unmanned aerial vehicles (UAVs) for multi-temporal crop surface modelling- A new method for plant height and biomass estimation based on RGB-imaging. Retrieved from http://kups.ub.uni-koeln.de/6018/1/Bendig_PhD_2014_Ort&Datum_final_noCV.pdf.
  10. Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sensing, 6(11), 10395–10412.  https://doi.org/10.3390/rs61110395.CrossRefGoogle Scholar
  11. Bosch Serra, A. D., & Casanova, D. (1998). Estimation of onion (Allium cepa L.) biomass and light interception from reflectance measurements at field level. ISHS Acta Horticulturae, 519, 53–64.  https://doi.org/10.17660/ActaHortic.2000.519.4.Google Scholar
  12. Burgos, S., Mota, M., Noll, D., & Cannelle, B. (2015). Use of very high-resolution airborne images to analyse 3D canopy architecture of a vineyard. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: ISPRS Archives.  https://doi.org/10.5194/isprsarchives-XL-3-W3-399-2015.Google Scholar
  13. Chapman, S. C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M. F., et al. (2014). Pheno-copter: A low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy, 4, 279–301.  https://doi.org/10.3390/agronomy4020279.CrossRefGoogle Scholar
  14. Claverie, M., Demarez, V., Duchemin, B., Hagolle, O., Ducrot, D., Marais-Sicre, C., et al. (2012). Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data. Remote Sensing of Environment, 124, 844–857.  https://doi.org/10.1016/j.rse.2012.04.005.CrossRefGoogle Scholar
  15. Corcoles, J. I., Ortega, J. F., Hernandez, D., & Moreno, M. A. (2013). Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems Engineering, 115(1), 31–42.CrossRefGoogle Scholar
  16. ERGNSS. (2008). Spanish national GNSS reference stations network. Google Scholar
  17. FAOSTAT. (2013). Agricultural statistical data of Food and Agricultural Organization of the United Nations. Retrieved December 21, 2015, from http://faostat3.fao.org/download/Q/QC/E.
  18. Fonstad, M. J. (2012). Hyperspectral imagery in fluvial environments. In P. E. Carbonneau & H. Piégay (Eds.), Fluvial remote sensing for science and management (pp. 71–84). Chischester, UK: John Wiley & Sons, Ltd.  https://doi.org/10.1002/9781119940791.ch4.
  19. Gao, S., Niu, Z., Huang, N., & Hou, X. (2013). Estimating the leaf area index, height and biomass of maize using HJ-1 and RADARSAT-2. International Journal of Applied Earth Observation and Geoinformation, 24(1), 1–8.  https://doi.org/10.1016/j.jag.2013.02.002.CrossRefGoogle Scholar
  20. Geipel, J., Link, J., Claupein, W., Lucieer, A., Zarco-Tejada, P. J., Rascher, U., et al. (2014). Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sensing, 11, 10335–10355.  https://doi.org/10.3390/rs61110335.CrossRefGoogle Scholar
  21. Gitelson, A., Peng, Y., Arkebauer, T. J., & Schepers, J. (2014). Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 144, 65–72.  https://doi.org/10.1016/j.rse.2014.01.004.CrossRefGoogle Scholar
  22. Gitelson, A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., & Leavitt, B. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 4–7.  https://doi.org/10.1029/2002GL016450.CrossRefGoogle Scholar
  23. Gupta, R. K., Prasad, T. S., & Vijayan, D. (2000). Relationship between LAI and NDVI for IRS LISS and LANDSAT TM bands. Advances in Space Research, 26(7), 1047–1050.  https://doi.org/10.1016/S0273-1177(99)01115-1.CrossRefGoogle Scholar
  24. Hedley, C. (2015). The role of precision agriculture for improved nutrient management on farms. Journal of the Science of Food and Agriculture, 95(1), 12–19.  https://doi.org/10.1002/jsfa.6734.CrossRefPubMedGoogle Scholar
  25. Hernández-López, D., Felipe-Garcia, B., González-Aguilera, D., & Arias-Pérez, B. (2013). An automatic approach to UAV flight planning and control for photogrammetric application. Photogrammetric Engineering & Remote Sensing, 79(1), 87–98.CrossRefGoogle Scholar
  26. Hofle, B. (2014). Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geoscience and Remote Sensing Letters, 11(1), 94–98.  https://doi.org/10.1109/LGRS.2013.2247022.CrossRefGoogle Scholar
  27. Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., McMurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359–378.  https://doi.org/10.1007/s11119-005-2324-5.CrossRefGoogle Scholar
  28. Jannoura, R., Brinkmann, K., Uteau, D., Bruns, C., & Joergensen, R. G. (2015). Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter. Biosystems Engineering, 129, 341–351.  https://doi.org/10.1016/j.biosystemseng.2014.11.007.CrossRefGoogle Scholar
  29. Lati, R. N., Filin, S., & Eizenberg, H. (2013). Estimating plant growth parameters using an energy minimization-based stereovision model. Computers and Electronics in Agriculture, 98, 260–271.  https://doi.org/10.1016/j.compag.2013.07.012.CrossRefGoogle Scholar
  30. Li, W., Niu, Z., Huang, N., Wang, C., Gao, S., & Wu, C. (2015). Airborne LiDAR technique for estimating biomass components of maize: A case study in Zhangye City, Northwest China. Ecological Indicators, 57, 486–496.  https://doi.org/10.1016/j.ecolind.2015.04.016.CrossRefGoogle Scholar
  31. Liu, J., Pattey, E., Miller, J. R., McNairn, H., Smith, A., & Hu, B. (2010). Estimating crop stresses, aboveground dry biomass and yield of corn using multi-temporal optical data combined with a radiation use efficiency model. Remote Sensing of Environment, 114(6), 1167–1177.  https://doi.org/10.1016/j.rse.2010.01.004.CrossRefGoogle Scholar
  32. Lumme, J., Karjalainen, M., Kaartinen, H., Kukko, A., Hyyppä, J., Hyyppä, H., et al. (2008). Terrestrial laser scanning of agricultural crops. The International Archives of the Photogram metry, Remote Sensing and Spatial Information Sciences, 37(B5), 563–566.Google Scholar
  33. Marino, S., & Alvino, A. (2015). Hyperspectral vegetation indices for predicting onion (Allium cepa L.) yield spatial variability. Computers and Electronics in Agriculture, 116, 109–117.  https://doi.org/10.1016/j.compag.2015.06.014.CrossRefGoogle Scholar
  34. Meier, U. (2001). Growth stages of mono-and dicotyledonous plants. BBCH monograph. Braunschweig, Germany: Federal Biological Research Centre of Agriculture and Forest.Google Scholar
  35. Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61(3), 319–346.  https://doi.org/10.1016/S0034-4257(97)00045-X.CrossRefGoogle Scholar
  36. Ribeiro-Gomes, K., Hernandez-Lopez, D., Ballesteros, R., & Moreno, M. A. (2016). Approximate georeferencing and automatic blurred image detection to reduce the costs of UAV use in environmental and agricultural applications. Biosystems Engineering, 151, 308–327.  https://doi.org/10.1016/j.biosystemseng.2016.09.014.CrossRefGoogle Scholar
  37. Sevacherian, V., Stern, V. M., & Mueller, A. J. (1977). Heat accumulation for timing Lygus control measures in a safflower-cotton complex. Journal of Economic Entomology, 70(4), 399–402. http://jee.oxfordjournals.org/content/70/4/399.abstract.
  38. Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3), 426.  https://doi.org/10.2134/agronj2008.0139s.CrossRefGoogle Scholar
  39. Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21–27.CrossRefGoogle Scholar
  40. Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz-Wiedemann, V., Miao, Y., et al. (2014). Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. Journal of Applied Remote Sensing, 8(1), 83671.  https://doi.org/10.1117/1.JRS.8.083671.CrossRefGoogle Scholar
  41. Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE, 10(6), e0130479.  https://doi.org/10.1371/journal.pone.0130479.CrossRefPubMedPubMedCentralGoogle Scholar
  42. UNEP. (1997). In N. Middleton & D. Thomas (Eds.), World atlas of desertification (2nd ed.). London.Google Scholar
  43. Usha, K., & Singh, B. (2013). Potential applications of remote sensing in horticulture-A review. Scientia Horticulturae, 153, 71–83.  https://doi.org/10.1016/j.scienta.2013.01.008.CrossRefGoogle Scholar
  44. Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy.  https://doi.org/10.1016/j.eja.2014.01.004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rocio Ballesteros
    • 1
  • Jose Fernando Ortega
    • 1
  • David Hernandez
    • 2
  • Miguel Angel Moreno
    • 1
  1. 1.Regional Centre of Water Research (CREA), Castilla-La Mancha UniversityAlbaceteSpain
  2. 2.Regional Development Institute (IDR)Castilla-La Mancha UniversityAlbaceteSpain

Personalised recommendations