Precision Agriculture

, Volume 18, Issue 1, pp 76–94 | Cite as

Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize

  • F. Castaldi
  • F. Pelosi
  • S. Pascucci
  • R. Casa


The capability of images acquired from unmanned aerial vehicles (UAVs), with multispectral cameras, to detect weed patches, should be tested in operational situations of site-specific weed management. In this regard, different post-emergence herbicide application strategies were evaluated on a total of four silage maize fields in Central Italy. The treatments compared were uniform blanket application, patch spraying according to the application map and an untreated control (the latter treatment only in the second year). Images were acquired a few weeks after maize emergence and were processed into application (i.e. prescription) maps. The accuracy of prescription maps was evaluated on the basis of ground-truth data. Maize and weed biomass data collected at end of the growing season were used to assess differences among the herbicide application strategies. Results showed no differences between uniform and patch spraying treatments for silage maize biomass in the two fields of the first year. In the second year, maize biomass differences were observed between the untreated control and the other two treatments. In terms of weed biomass there were no differences among treatments, for three out of four fields. The use of UAV image data captured early post-emergence in maize lead to a decrease in the use of herbicide without negative consequences in terms of crop yield and, at the same time, increased the silage biomass production as compared to non-treated area. The saving of herbicide calculated in terms of untreated area ranged between 14 and 39.2 % for patch spraying as compared to a uniform blanket application, and saved between 16 and 45 € ha−1.


Weed Prescription map Biomass Site-specific weed management Multispectral sensor Corn 



Funding for the research presented in this paper was provided by the Italian Ministry of Agricultural and Forest Policy (Mipaf) within the APREINF OIGA project. The authors would like to acknowledge the essential contribution of the farmer Vittorio Lopez, who provided the boom sprayer and the fields in which the research took place and who took care of all the agronomic management.


  1. Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: Application to maize and onion crops of a semi-arid region in Spain. Precision Agriculture, 15(6), 593–614. doi: 10.1007/s11119-014-9357-6.CrossRefGoogle Scholar
  2. Blanco-Moreno, J. M., Chamorro, L., & Sans, F. X. (2006). Spatial and temporal patterns of Lolium rigidum-Avena sterilis mixed populations in a cereal field. Weed Research, 46(3), 207–218. doi: 10.1111/j.1365-3180.2006.00493.x.CrossRefGoogle Scholar
  3. Brus, D. J., & de Gruijter, J. J. (1997). Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion). Geoderma, 80(1–2), 1–44. doi: 10.1016/S0016-7061(97)00072-4.CrossRefGoogle Scholar
  4. Cardina, J., Johnson, G. A., & Sparrow, D. H. (1997). Nature and consequence of weed spatial distribution. Weed science. Retrieved from
  5. Christensen, S., Sǿgaard, H. T., Kudsk, P., Nørremark, M., Lund, I., Nadimi, E. S., et al. (2009). Site-specific weed control technologies. Weed Research, 49(3), 233–241. doi: 10.1111/j.1365-3180.2009.00696.x.CrossRefGoogle Scholar
  6. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. doi: 10.1016/0034-4257(91)90048-B.CrossRefGoogle Scholar
  7. Costantini, E.A.C., L’Abate, G., Barbetti, R., Fantappié, M., Lorenzetti, R. and Magini, S. (2012). Carta dei suoli d’Italia, scala 1:1.000.000 (Soil map of Italy, scale 1:1.000.000). Consiglio per ricerca e la sperimentazione in agricoltura, S.EL.CA. Florence/Firenze, Italy (ISBN: 978-88-97002-02-4). Accessed 29 May 2016.
  8. De Castro, A. I., López-Granados, F., & Jurado-Expósito, M. (2013). Broad-scale cruciferous weed patch classification in winter wheat using QuickBird imagery for in-season site-specific control. Precision Agriculture, 14(4), 392–413. doi: 10.1007/s11119-013-9304-y.CrossRefGoogle Scholar
  9. Demarez, V., Duthoit, S., Baret, F., Weiss, M., & Dedieu, G. (2008). Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agricultural and Forest Meteorology, 148(4), 644–655. doi: 10.1016/j.agrformet.2007.11.015.CrossRefGoogle Scholar
  10. Gerhards, R. (2013). Site-specific weed control. In H. J. Heege (Ed.), Precision in crop farming: Site specific concepts and sensing methods (pp. 273–294). Kiel: Springer.CrossRefGoogle Scholar
  11. Gerhards, R., & Christensen, S. (2003). Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley. Weed Research, 43(6), 385–392. doi: 10.1046/j.1365-3180.2003.00349.x.CrossRefGoogle Scholar
  12. Gerhards, R., & Oebel, H. (2006). Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46(3), 185–193. doi: 10.1111/j.1365-3180.2006.00504.x.CrossRefGoogle Scholar
  13. Gerhards, R., Wyse-Pester, D. Y., Mortensen, D., & Johnson, G. A. (1997). Characterizing spatial stability of weed populations using interpolated maps. Weed Science, 45(1).
  14. Goel, P., Prasher, S., Landry, J., Patel, R., Bonnell, R., Viau, A., et al. (2003). Potential of airborne hyperspectral remote sensing to detect nitrogen deficiency and weed infestation in corn. Computers and Electronics in Agriculture, 38(2), 99–124. doi: 10.1016/S0168-1699(02)00138-2.CrossRefGoogle Scholar
  15. Gray, C. J., Shaw, D. R., & Bruce, L. M. (2009). Utility of hyperspectral reflectance for differentiating soybean (Glycine max) and six weed species. Weed Technology, 23, 108–119.CrossRefGoogle Scholar
  16. Gutiérrez, P. A., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Gómez-Casero, M. T., & Hervás-Martínez, C. (2008). Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture, 60(2), 122–132. doi: 10.1016/j.compag.2007.07.011.CrossRefGoogle Scholar
  17. Hamouz, P., Hamouzová, K., Holec, J., & Tyšer, L. (2013). Impact of site-specific weed management on herbicide savings and winter wheat yield. Plant, Soil and Environment, 59(3), 101–107. Retrieved from
  18. Hamouz, P., Hamouzova, K., Tyser, L., & Holec, J. (2014). Effect of Site-Specific Weed Management in Winter Crops on Yield and Weed Populations. Plant, Soil and Environment. Retrieved from
  19. Hess, M., Barralis, G., Bleiholder, H., Buhr, L., Eggers, T., Hack, H., et al. (1997). Use of the extended BBCH scale—general for the descriptions of the growth stages of mono- and dicotyledonous weed species. Weed Research, 6, 433–441.CrossRefGoogle Scholar
  20. Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2007). A practical guide to support vector classification. National Taiwan University. Retrieved from: Accessed 29 June 2016
  21. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAOGoogle Scholar
  22. López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real time approaches. Weed Research, 51, 1–11.CrossRefGoogle Scholar
  23. López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A. I., Mesas-Carrascosa, F.-J., et al. (2015). Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precision Agriculture. doi: 10.1007/s11119-015-9415-8.Google Scholar
  24. Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–1790. doi: 10.1109/TGRS.2004.831865.CrossRefGoogle Scholar
  25. Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. doi: 10.1093/biomet/37.1-2.17.CrossRefPubMedGoogle Scholar
  26. Nordmeyer, H. (2009). Spatial and temporal dynamics of Apera spica-venti seedling populations. Crop Protection, 28(10), 831–837. doi: 10.1016/j.cropro.2009.06.006.CrossRefGoogle Scholar
  27. Oerke, E.-C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144(01), 31. doi: 10.1017/S0021859605005708.CrossRefGoogle Scholar
  28. Pelosi, F., Castaldi, F., & Casa, R. (2015). Operational unmanned aerial vehicle assisted post-emergence herbicide patch spraying in maize: A field study. In Precision Agriculture 2015 - Papers Presented at the 10th European Conference on Precision Agriculture, ECPA 2015 (pp. 159–166). Wageningen Academic Publishers. Retrieved from
  29. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One, 8(10), e77151. doi: 10.1371/journal.pone.0077151.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Perry, N. H., Lutman, P. J. W., Miller, P. C. H., & Wheeler, H. C. (2001). A map-based system for patch spraying weeds - weed mapping. In The BCPC Conference: Weeds, 2001, Volume 1 and Volume 2. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 12-15 November 2001. (pp. 841–846). British Crop Protection Council. Retrieved from
  31. Pollice, A., & Bilancia, M. (2002). Kriging with mixed effects models (pp. 405–429). LXII: Statistica.Google Scholar
  32. Pringle, M. J., Bishop, T. F. A., Lark, R. M., & Whelan, B. M. (2010). The Analysis of Spatial Experiments. In M. A. Oliver (Ed.), Geostatistical applications for precision agriculture (pp. 243–269). Dordrecht: Springer.CrossRefGoogle Scholar
  33. Rango, A., Laliberte, A., Steele, C., Herrick, J. E., Bestelmeyer, B., Schmugge, T., et al. (2006). Using unmanned aerial vehicles for rangelands: Current Applications and future potentials. Environmental Practice, 8(03), 159–168. doi: 10.1017/S1466046606060224.CrossRefGoogle Scholar
  34. Thorp, K. R., & Tian, L. F. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5(5), 477–508. doi: 10.1007/s11119-004-5321-1.CrossRefGoogle Scholar
  35. Torres-Sánchez, J., Peña, J. M., de Castro, A. I., & López-Granados, F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103, 104–113. doi: 10.1016/j.compag.2014.02.009.CrossRefGoogle Scholar
  36. Wallinga, J., Groeneveld, R. M. W., & Lotz, L. A. P. (1998). Measures that describe weed spatial patterns at different levels of resolution and their applications for patch spraying of weeds. Weed Research, 38(5), 351–359. doi: 10.1046/j.1365-3180.1998.00106.x.CrossRefGoogle Scholar
  37. Wiles, L. J. (2009). Beyond patch spraying: site-specific weed management with several herbicides. Precision Agriculture, 10(3), 277–290. doi: 10.1007/s11119-008-9097-6.CrossRefGoogle Scholar
  38. Williams, M. M, I. I., Gerhards, R., & Mortensen, D. A. (2000). Two-year weed seedling population responses to a post-emergent method of site-specific weed management. Precision Agriculture, 2(3), 247–263. doi: 10.1023/A:1011886722418.CrossRefGoogle Scholar
  39. Younan, N. H., King, R. L., & Bennett, H. H, Jr. (2004). Classification of hyperspectral data: A comparative study. Precision Agriculture, 5(1), 41–53.CrossRefGoogle Scholar
  40. Zanin, G., Berti, A., & Toniolo, L. (1993). Estimation of economic thresholds for weed control in winter wheat. Weed Research, 33(6), 459–467. doi: 10.1111/j.1365-3180.1993.tb01962.x.CrossRefGoogle Scholar
  41. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. doi: 10.1007/s11119-012-9274-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Agricultural and Forestry scieNcEs (DAFNE)Università degli Studi della TusciaViterboItaly
  2. 2.Consiglio Nazionale delle Ricerche- Institute of Methodologies for Environmental Analysis (C.N.R. – IMAA)RomeItaly

Personalised recommendations