Precision Agriculture

, Volume 18, Issue 2, pp 133–144 | Cite as

Relevance of sink-size estimation for within-field zone delineation in vineyards

  • I. Urretavizcaya
  • J. B. Royo
  • C. Miranda
  • B. Tisseyre
  • S. Guillaume
  • L. G. Santesteban


Source to sink size ratio, i.e.: the relative abundance of photosynthetically active organs (leaves) with regards to photosynthate demanding organs (mainly bunches), is widely known to be one of the main drivers of grape oenological quality. However, due to the difficulty of remote sink size estimation, Precision Viticulture (PV) has been mainly based on within-field zone delineation using vegetation indices. This approach has given only moderately satisfactory results for discriminating zones with differential quality. The aim of this work was to investigate an approach to delineate within-vineyard quality zones that includes an estimator of sink size in the data-set. The study was carried out during two consecutive seasons on a 4.2 ha gobelet-trained cv. ‘Tempranillo’ vineyard. Zone delineation was performed using Normalized Difference Vegetation Index (NDVI), soil apparent electrical conductivity (ECa) and bunch number (BN) data. These variables were considered separately, in pairs, or the three altogether, using fuzzy k-means cluster analysis for combinations. The zones delineated based on single variables did not allow a sufficient discrimination for grape composition at harvest, NDVI being the only variable that by itself resulted in zones that to some extent differed in grape composition. On the contrary, when two variables were combined, discrimination in terms of grape composition improved remarkably, provided the sink size estimation variable (BN) was included in the combination. Lastly, the combination of the three variables yielded the best discriminating zoning, improving slightly on those provided by NDVI + BN and ECa + BN combinations. Thus, the relevance of including a variable related to sink size (in this case the number of bunches per plant) has been confirmed, which makes its consideration highly advisable for any PV work aiming at zone delineation for grape quality purposes.


Precision Viticulture Fuzzy k-means Within-field variability Fruit load Source sink ratio 



This work was funded by the Dpt. Innovación, Industria & Empleo of the Government of Navarra (MODELVID, Ref: IIM11879.RI.1), by the Centro para el Desarrollo Tecnológico Industrial-CDTI (Ref: IDI-20100729, co-funded by the European Union ERDF as part of the Operational Programme I+D+i Technology Fund 2007–2013) and by Fundación Fuentes Dutor. The Spanish Ministry of Education funded I.U. stage in SupAgro, Montpellier (EDU/2719/2011). The authors also would like to express their gratitude to the owners and staff in Bodegas Luis Cañas, particularly to M. José Aparicio and Olaya Fernandez, and to Rafael Álvarez (Verdtech Nuevo Campo) for their co-operation and interest.

Supplementary material

11119_2016_9450_MOESM1_ESM.pdf (2.8 mb)
Supplementary material 1 (PDF 2837 kb)


  1. Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008a). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9(5), 285–302.CrossRefGoogle Scholar
  2. Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., & Guillaume, S. (2008b). Is it possible to assess the spatial variability of vine water status? Journal International des Sciences de la Vigne et du Vin, 42(4), 203–220.Google Scholar
  3. Acevedo-Opazo, C., Tisseyre, B., Taylor, J. A., Ojeda, H., & Guillaume, S. (2010). A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information. Precision Agriculture, 11(4), 358–378.CrossRefGoogle Scholar
  4. Aerny, J. (1996). Composés azotés des moûts et des vins (Nitrogencompounds of musts and wines). Revue Suisse de Viticulture, Arboriculture et Horticulture, 28, 161–165.Google Scholar
  5. Baluja, J., Diago, M. P., Goovaerts, P., & Tardaguila, J. (2012). Assessment of the spatial variability of grape anthocyanins using a fluorescence sensor. Relationships with vine vigour and yield. Precision Agriculture, 13, 457–472.CrossRefGoogle Scholar
  6. Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14, 40–58.CrossRefGoogle Scholar
  7. Bonilla, I., Martínez de Toda, F., & Martínez-Casasnovas, J. A. (2015). Vine vigor, yield and grape quality assessment by airborne remote sensing over three years: analysis of unexpected relationships in cv. Tempranillo. Spanish Journal of Agricultural Research, 13(1), 1–8.Google Scholar
  8. Boydell, B., & McBratney, A. B. (2002). Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 3(1), 9–23.CrossRefGoogle Scholar
  9. Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11(1), 33–42.CrossRefGoogle Scholar
  10. Bramley, R. G. V., & Lamb, D. (2003). Marking sense of variability in Australia. In Proc. Internat. Symp. on Precision Viticulture, Ninth Latin American Congr. on Viticulture and Oenology (pp. 35–54).Google Scholar
  11. Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011a). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17(2), 217–229.CrossRefGoogle Scholar
  12. Bramley, R. G. V., Ouzman, J., & Thornton, C. (2011b). Selective harvesting is a feasible and profitable strategy even when grape and wine production is geared towards large fermentation volumes. Australian Journal of Grape and Wine Research, 17(3), 298–305.CrossRefGoogle Scholar
  13. Bramley, R. G. V., Trought, M. C. T., & Praat, J. P. (2011c). Vineyard variability in Marlborough, New Zealand: characterising variation in vineyard performance and options for the implementation of Precision Viticulture. Australian Journal of Grape and Wine Research, 17(1), 83–89.CrossRefGoogle Scholar
  14. Brevik, E. C., Fenton, T. E., & Lazari, A. (2006). Soil electrical conductivity as a function of soil water content and implications for soil mapping. Precision Agriculture, 7(6), 393–404.CrossRefGoogle Scholar
  15. Champagnol, F. (1984). Éléments de physiologie de la vigne et de viticulture générale. (Elements of the physiology of the vine and of general viticulture). France: Saint-Gely-du Fesc, Champagnol.Google Scholar
  16. Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.CrossRefGoogle Scholar
  17. De Souza, C. R., Maroco, J. P., Dos Santos, T. P., Rodrigues, M. L., Lopes, C. M., Pereira, J. S., & Chaves, M. M. (2005). Grape berry metabolism in field-grown grapevines exposed to different irrigation strategies. Vitis, 44, 103–109.Google Scholar
  18. Diago, M., Correa, C., Millan, B., Barreiro, P., Valero, C., & Tardaguila, J. (2012). Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Sensors, 12(12), 16988–17006.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dunn, G. M., & Martin, S. R. (1998). Optimising vineyard sampling to estimate yield components. The Australian Grapegrower & Winemaker, 414, 102–107.Google Scholar
  20. Fernandez, R., Montes, H., Salinas, C., Sarria, J., & Armada, M. (2013). Combination of RGB and multispectral imagery for discrimination of cabernet sauvignon grapevine elements. Sensors, 13(6), 7838–7859.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Friedman, S. P. (2005). Soil properties influencing apparent electrical conductivity: a review. Computers and Electronics in Agriculture, 46, 45–70.CrossRefGoogle Scholar
  22. Garcia, S., Santesteban, L. G., Miranda, C., & Royo, J. B. (2011). Variety and storage time affect the compositional changes that occur in grape samples after frozen storage. Australian Journal of Grape and Wine Research, 17(2), 162–168.CrossRefGoogle Scholar
  23. Glories, Y., & Augustin, M. (1993). Maturité phénolique du raisin, conséquences technologiques: applicationaux millésimes 1991 et 1992 (Phenolic ripeness of grapes, technological consequences:application to vintages 1991 and 1992). Journée technique du C.I.V.B.: Actes du colloque, Bordeaux (pp. 56–61).Google Scholar
  24. Grocholsky, B., Nuske, S., Aasted, M., Achar, S., & Bates, T. (2011). A camera and laser system for automatic vine balance assessment. Paper presented at the American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2011, Technical Library.Google Scholar
  25. Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2011). Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12(1), 103–117.CrossRefGoogle Scholar
  26. Hall, A., Louis, J., & Lamb, D. (2003). Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers & Geosciences, 29(7), 813–822.CrossRefGoogle Scholar
  27. Howell, G. S. (2001). Sustainable grape productivity and the growth–yield relationship: a review. American Journal of Enology and Viticulture, 52(3), 165–174.Google Scholar
  28. Huglin, P., & Schneider, C. (1998). Biologie et écologie de la vigne (Biology and ecology of the vineyard). Paris: Ed. Lavoisier Tec & Doc.Google Scholar
  29. Jackson, D. I., & Lombard, P. B. (1993). Environmental and management practices affecting grape composition and wine quality-a review. American Journal of Enology and Viticulture, 44, 409–430.Google Scholar
  30. Johnson, L., Lobitz, B., Arrnstrong, R., Baldy, R., Weber, E., De Benedictis, J., & Bosch, D. (1996). Airborne imaging aids vineyard canopy evaluation. California Agriculture, 50, 14–18.CrossRefGoogle Scholar
  31. King, P. D., Smart, R. E., & Mcclellan, D. J. (2004). Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’s Bay, New Zealand. Australian Journal of Grape and Wine Research, 20(2), 234–246.CrossRefGoogle Scholar
  32. Nuske, S., Achar, S., Bates, T., Narasimhan, S., & Singh, S. (2011). Yield estimation in vineyards by visual grape detection. Paper presented at the IEEE/Rsj International Conference on Intelligent Robots and Systems (pp. 2352–2358).Google Scholar
  33. Ravaz, L. (1903). Sur la brunissure de la vigne. Comptes Rendus de l’Academie des Sciences, 136, 1276–1278.Google Scholar
  34. Sahai, H., & Ojeda, M. M. (2004). Analysis of variance for random models: theory, methods, applications and data analysis. Boston: Birkaüser.CrossRefGoogle Scholar
  35. Santesteban, L. G., Guillaume, S., Royo, J. B., & Tisseyre, B. (2013). Are precision agriculture tools and methods relevant at the whole-vineyard scale? Precision Agriculture, 14, 2–17.CrossRefGoogle Scholar
  36. Santesteban, L. G., Miranda, C., Jiménez, C., Fuentemilla, M., Urretavizcaya, I., Tisseyre, B., et al. (2010). Evaluación del interés del índice NDVI para la delimitación de unidades de manejo diferenciado (UMD) en una explotación vitícola. (Evaluation of the interest of NDVI to identify distinct management units in vineyards). Revista de Teledetección, 33, 11–16.Google Scholar
  37. Santesteban, L. G., & Royo, J. B. (2006). Water status, leaf area and fruit load influence on berry weight and sugar accumulation of cv. ‘Tempranillo’ under semiarid conditions. Scientia Horticulturae, 109(1), 60–65.CrossRefGoogle Scholar
  38. Smart, R. E., & Robinson, M. (1991). Sunlight into wine. A handbook for winegrape canopy management. Adelaide, Australia: Winetitles.Google Scholar
  39. Stamatiadis, S., Taskos, D., Tsadila, E., Christofides, C., Tsadilas, C., & Schepers, J. S. (2010). Comparison of passive and active canopy sensors for the estimation of vine biomass production. Precision Agriculture, 11, 306–315.CrossRefGoogle Scholar
  40. Tagarakis, A., Liakos, V., Fountas, S., Koundouras, S., & Gemtos, T. A. (2013). Management zones delineation using fuzzy clustering techniques in grapevines. Precision Agriculture, 14(1), 18–39.CrossRefGoogle Scholar
  41. Taylor, J., Tisseyre, B., & Praat, J. P. (2005). Bottling good information: mixing tradition and technology in vineyards. Proceedings of FRUTIC 05: Information and Technology for Sustainable Fruit and Vegetable Production (pp. 12–16).Google Scholar
  42. Tomás, M., Medrano, H., Pou, A., Escalona, J. M., Martorell, S., Ribas-Carbó, M., & Flexas, J. (2012). Water-use efficiency in grapevine cultivars grown under controlled conditions: effects of water stress at the leaf and whole-plant level. Australian Journal of Grape and Wine Research, 18, 164–172.CrossRefGoogle Scholar
  43. Urretavizcaya, I., Santesteban, L. G., Echeverría, N., Miranda, C., & Royo, J. B. (2011). Precision Viticulture tools to manage goblet-trained vineyards in ‘Rioja Alavesa’. Paper presented at the 17th International Giesco Symposium, Asti-Alba (Italy).Google Scholar
  44. Urretavizcaya, I., Santesteban, L. G., Tisseyre, B., Guillaume, S., Miranda, C., & Royo, J. B. (2014). Oenological significance of vineyard management zones delineated using early grape sampling. Precision Agriculture, 15(1), 111–129.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. Urretavizcaya
    • 1
  • J. B. Royo
    • 1
  • C. Miranda
    • 1
  • B. Tisseyre
    • 2
  • S. Guillaume
    • 2
  • L. G. Santesteban
    • 1
  1. 1.Departamento de Producción AgrariaUniversidad Pública de NavarraPamplonaSpain
  2. 2.UMR ITAP, IRSTEA/Montpellier SupAgroMontpellierFrance

Personalised recommendations