Precision Agriculture

, Volume 16, Issue 4, pp 361–384 | Cite as

Systematic analysis of site-specific yield distributions resulting from nitrogen management and climatic variability interactions

  • Benjamin Dumont
  • Bruno Basso
  • Vincent Leemans
  • Bernard Bodson
  • Jean-Pierre Destain
  • Marie-France Destain


At the plot level, crop simulation models such as STICS have the potential to evaluate risk associated with management practices. In nitrogen (N) management, however, the decision-making process is complex because the decision has to be taken without any knowledge of future weather conditions. The objective of this paper is to present a general methodology for assessing yield variability linked to climatic uncertainty and variable N rate strategies. The STICS model was coupled with the LARS-Weather Generator. The Pearson system and coefficients were used to characterise the shape of yield distribution. Alternatives to classical statistical tests were proposed for assessing the normality of distributions and conducting comparisons (namely, the Jarque–Bera and Wilcoxon tests, respectively). Finally, the focus was put on the probability risk assessment, which remains a key point within the decision process. The simulation results showed that, based on current N application practice among Belgian farmers (60-60-60 kgN ha−1), yield distribution was very highly significantly non-normal, with the highest degree of asymmetry characterised by a skewness value of −1.02. They showed that this strategy gave the greatest probability (60 %) of achieving yields that were superior to the mean (10.5 t ha−1) of the distribution.


Nitrogen management Climatic variability LARS-WG Weather Generator STICS Soil-crop model Pearson system Probability risk assessment 



The authors would like to thank the SPW (DGARNE – DGO-3) for its financial support for the project entitled ‘Suivi en temps réel de l’environnement d’une parcelle agricole par un réseau de microcapteurs en vue d’optimiser l’apport en engrais azotés’. The authors would also like to thank the OptimiSTICS team for allowing them to use the Matlab running code of the STICS model. The authors are very grateful to CRA-W, especially the Systèmes agraires, Territoire et Technologies de l’Information unit, for providing them with the Ernage station climatic database. The authors would thank Giles Collinet and Robert Oger, for their respective contribution to the field experiments and to the paper. Finally, the authors are thankful to the MACSUR knowledge hub within which the co-authors shared their experiences for this research.


  1. Arslan, S., & Colvin, T. (2002). Grain Yield Mapping: Yield Sensing, Yield Reconstruction, and Errors. Precision Agriculture, 3(2), 135–154.CrossRefGoogle Scholar
  2. Basso, B., Bertocco, M., Sartori, L., & Martin, E. C. (2007). Analyzing the effects of climate variability on spatial pattern of yield in a maize–wheat–soybean rotation. European Journal of Agronomy, 26(2), 82–89.CrossRefGoogle Scholar
  3. Basso, B., Fiorentino, C., Cammarano, D., Cafiero, G., & Dardanelli, J. (2012a). Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. European Journal of Agronomy, 41, 52–65.CrossRefGoogle Scholar
  4. Basso, B., & Ritchie, J. T. (2005). Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize–alfalfa rotation in Michigan. Agriculture, Ecosystems & Environment, 108(4), 329–341.CrossRefGoogle Scholar
  5. Basso, B., Ritchie, J. T., Cammarano, D., & Sartori, L. (2011a). A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. European Journal of Agronomy, 35(4), 215–222. doi: 10.1016/j.eja.2011.06.004.CrossRefGoogle Scholar
  6. Basso, B., Sartori, L., Bertocco, M., Cammarano, D., Martin, E. C., & Grace, P. R. (2011b). Economic and environmental evaluation of site-specific tillage in a maize crop in NE Italy. European Journal of Agronomy, 35(2), 83–92. doi: 10.1016/j.eja.2011.04.002.CrossRefGoogle Scholar
  7. Basso, B., Sartori, L., Cammarano, D., Fiorentino, C., Grace, P. R., Fountas, S., et al. (2012b). Environmental and economic evaluation of N fertilizer rates in a maize crop in Italy: A spatial and temporal analysis using crop models. Biosystems Engineering, 113(2), 103–111. doi: 10.1016/j.biosystemseng.2012.06.012.CrossRefGoogle Scholar
  8. Beaudoin, N., Launay, M., Sauboua, E., Ponsardin, G., & Mary, B. (2008). Evaluation of the soil crop model STICS over 8 years against the ‘on farm’ database of Bruyères catchment. European Journal of Agronomy, 29, 46–57.CrossRefGoogle Scholar
  9. Binder, J., Graeff, S., Link, J., Claupein, W., Liu, M., Dai, M., et al. (2008). Model-Based Approach to Quantify Production Potentials of Summer Maize and Spring Maize in the North China Plain. Agrononomy Journal, 100(3), 862–873.CrossRefGoogle Scholar
  10. Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., et al. (2003). An overview of the crop model stics. European Journal of Agronomy, 18(3–4), 309–332.CrossRefGoogle Scholar
  11. Brisson, N., Launay, M., Mary, B., & Beaudoin, N (Eds.). (2009). Conceptual basis, formalisations and parameterization of the STICS crop model, Versailles, FRA : Editions Quae. (Last accessed 09-15-2014).
  12. Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., et al. (1998). STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18(5–6), 311–346.CrossRefGoogle Scholar
  13. Brisson, N., Ruget, F., Gate, P., Lorgeau, J., Nicoulaud, B., Tayo, X., et al. (2002). STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie, 22, 69–82.CrossRefGoogle Scholar
  14. Constantin, J., Beaudoin, N., Launay, M., Duval, J., & Mary, B. (2012). Long-term nitrogen dynamics in various catch crop scenarios: Test and simulations with STICS model in a temperate climate. Agriculture, Ecosystems & Environment, 147, 36–46.CrossRefGoogle Scholar
  15. Constantin, J., Beaudoin, N., Laurent, F., Cohan, J.-P., Duyme, F., & Mary, B. (2011). Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant and Soil, 341(1–2), 137–154.CrossRefGoogle Scholar
  16. Day, R. H. (1965). Probability Distributions of Field Crop Yields. Journal of Farm Economics, 47(3), 713–741.CrossRefGoogle Scholar
  17. Delin, S., Lindén, B., & Berglund, K. (2005). Yield and protein response to fertilizer nitrogen in different parts of a cereal field: potential of site-specific fertilization. European Journal of Agronomy, 22(3), 325–336.CrossRefGoogle Scholar
  18. Du, X., Hennessy, D., & Yu, C. (2012). Testing Day’s Conjecture that More Nitrogen Decreases Crop Yield Skewness. American Journal of Agricultural Economics, 94(1), 225–237.CrossRefGoogle Scholar
  19. Dumont, B., Basso, B., Leemans, V., Bodson, B., Destain, J. P., & Destain, M. F. (2013). Yield variability linked to climate uncertainty and nitrogen fertilisation. In J. Stafford (Ed.), Precision agriculture’13 Proceedings of the 9 th European Confernce on Precision Agriculture (pp. 427–434). The Netherlands: Wageningen Academic Publishers.Google Scholar
  20. Dumont, B., Leemans, V., Ferrandis, S., Bodson, B., Destain, J.P., & Destain, M. F., (2014a). Assessing the potential of an algorithm based on mean climatic data to predict wheat yield. Precision Agriculture, 15(3), 255–272.Google Scholar
  21. Dumont, B., Leemans, V., Mansouri, M., Bodson, B., Destain, J., & Destain, M. (2014b). Parameter optimisation of the STICS crop model, with an accelerated formal MCMC approach (DREAM algorithm). Environmental Modelling and Software, 52, 121–135.CrossRefGoogle Scholar
  22. EC-Council Directive, 1991. Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources.Google Scholar
  23. Eickhout, B., Bouwman, A. F., & van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems & Environment, 116(1–2), 4–14.CrossRefGoogle Scholar
  24. Ewert, F., van Ittersum, M. K., Heckelei, T., Therond, O., Bezlepkina, I., & Andersen, E. (2011). Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agriculture, Ecosystems & Environment, 142(1–2), 6–17.CrossRefGoogle Scholar
  25. Guillaume, S., Bergez, J. E., Wallach, D., & Justes, E. (2011). Methodological comparison of calibration procedures for durum wheat parameters in the STICS model. European Journal of Agronomy, 35, 115–126.CrossRefGoogle Scholar
  26. Hennessy, D. A. (2009a). Crop Yield Skewness and the Normal Distribution. Journal of Agricultural and Resource Economics, 34(1), 34–52.Google Scholar
  27. Hennessy, D. A. (2009b). Crop Yield Skewness Under Law of the Minimum Technology. American Journal of Agricultural Economics, 91(1), 197–208.CrossRefGoogle Scholar
  28. Houlès, V., Mary, B., Guérif, M., Makowski, D., & Justes, E. (2004). Evaluation of the ability of the crop model STICS to recommend nitrogen fertilisation rates according to agro-environmental criteria. Agronomie, 24(6–7), 339–349.CrossRefGoogle Scholar
  29. Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8(3–4), 161–179.CrossRefGoogle Scholar
  30. Just, R. E., & Weninger, Q. (1999). Are Crop Yields Normally Distributed? American Journal of Agricultural Economics, 81(2), 287–304.CrossRefGoogle Scholar
  31. Koundouri, P., & Kourogenis, N. (2011). On the Distribution of Crop Yields: Does the Central Limit Theorem Apply? American Journal of Agricultural Economics, 93(5), 1341–1357.CrossRefGoogle Scholar
  32. Lawless, C., & Semenov, M. A. (2005). Assessing lead-time for predicting wheat growth using a crop simulation model. Agricultural and Forest Meteorology, 135(1–4), 302–313.CrossRefGoogle Scholar
  33. Link, J., Batchelor, W., Graeff, S., & Claupein, W. (2008). Evaluation of current and model-based site-specific nitrogen applications on wheat (Triticum aestivum L.) yield and environmental quality. Precision Agriculture, 9(5), 251–267.CrossRefGoogle Scholar
  34. Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1–2), 51–73.CrossRefGoogle Scholar
  35. McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future Directions of Precision Agriculture. Precision Agriculture, 6(1), 7–23.CrossRefGoogle Scholar
  36. Mosier, A. R., Bleken, M., Chaiwanakupt, P., Ellis, E. C., Freney, J., Howarth, R. B., et al. (2001). Policy implications of human-accelerated nitrogen cycling. Biogeochemistry, 52, 281–320.CrossRefGoogle Scholar
  37. Nonhebel, S. (1994). The effects of use of average instead of daily weather data in crop growth simulation models. Agricultural Systems, 44(4), 377–396.CrossRefGoogle Scholar
  38. Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., et al. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35(3), 103–114.CrossRefGoogle Scholar
  39. Pearson, K. (1894). Contributions to the Mathematical Theory of Evolution. Philosophical Transactions of the Royal Society of London., 185 (Full publication date: 1894/Copyright © 1894 The Royal Society), 71–110.Google Scholar
  40. Porter, J. R., & Semenov, M. A. (1999). Climate variability and crop yields in Europe. Nature, 400(6746), 724. doi: 10.1038/23385.CrossRefGoogle Scholar
  41. Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2021–2035.CrossRefGoogle Scholar
  42. Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1–2), 27–41.CrossRefGoogle Scholar
  43. Recous, S., & Machet, J.-M. (1999). Short-term immobilisation and crop uptake of fertiliser nitrogen applied to winter wheat: effect of date of application in spring. Plant and Soil, 206(2), 137–149.CrossRefGoogle Scholar
  44. Riha, S. J., Wilks, D. S., & Simoens, P. (1996). Impact of temperature and precipitation variability on crop model predictions. Climatic Change, 32(3), 293–311.CrossRefGoogle Scholar
  45. Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.PubMedCrossRefGoogle Scholar
  46. Robertson, G. P., & Vitousek, P. M. (2009). Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, 34, 97–125.CrossRefGoogle Scholar
  47. Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change, 35(4), 397–414.CrossRefGoogle Scholar
  48. Semenov, M. A., & Barrow, E. M. (2002). LARS-WG - A stochastic weather generator for use in climate impact studies. User manual, version 3.0, August 2002. Tech. rep., Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK. Google Scholar
  49. Semenov, M. A., & Doblas-Reyes, F. J. (2007). Utility of dynamical seasonal forecasts in predicting crop yield. Climate Research, 34(1), 71–81.CrossRefGoogle Scholar
  50. Semenov, M., & Porter, J. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3–4), 265–283.CrossRefGoogle Scholar
  51. Smil, V. (1999). Nitrogen in crop production: An account of global flows. Global Biogeochemical Cycles, 13, 647–662.CrossRefGoogle Scholar
  52. Soltani, A., & Sinclair, T. R. (2012). Modeling Physiology of crop development, growth and yield.In Soltani & Sinclair (Eds.), CABI publishing, (pp. 336). doi: 10.1079/9781845939700.0000.
  53. Vandenberghe, C., Marcoen, J., Sohier, C., Degre, A., Hendrickx, C., Paulus, P., 2011. Developments in monitoring the effectiveness of the EU Nitrates Directive Action Programmes: Approach by Belgium, the Walloon region. In B. Fraters, et al. (Eds.), Developments in monitoring the effectiveness of the EU Nitrates Directive Action Programmes. Results of the second MonNO3 Workshop, 2009, (pp. 119–140). (Last accessed 09-15-2014).
  54. Vrugt, J. A., Braak, C. J. F. T., Diks, C. G. H., Robinson, B. A., Hyman, J. M., & Higdon, D. (2009). Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation, 10(3), 273–290.CrossRefGoogle Scholar
  55. Welsh, J. P., Wood, G. A., Godwin, R. J., Taylor, J. C., Earl, R., Blackmore, S., et al. (2003). Developing Strategies for Spatially Variable Nitrogen Application in Cereals. Part I: Winter Barley. Biosystems Engineering, 84(4), 481–494.Google Scholar
  56. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Benjamin Dumont
    • 1
  • Bruno Basso
    • 2
  • Vincent Leemans
    • 1
  • Bernard Bodson
    • 3
  • Jean-Pierre Destain
    • 4
  • Marie-France Destain
    • 1
  1. 1.Precision Agriculture Unit, Department of Biosystems EngineeringULg Gembloux Agro-Bio TechGemblouxBelgium
  2. 2.Department of Geological SciencesMichigan State UniversityEast LansingUSA
  3. 3.Department of Agriculture, Bio-engineering and ChemistryULg Gembloux Agro-Bio TechGemblouxBelgium
  4. 4.Walloon Agricultural Research Center (CRA-W)ULg Gembloux Agro-Bio TechGemblouxBelgium

Personalised recommendations