Precision Agriculture

, Volume 16, Issue 2, pp 129–147 | Cite as

Spatial analysis for management zone delineation in a humid tropic cocoa plantation

  • Sunshine A. De Caires
  • Mark N. Wuddivira
  • Isaac Bekele


Identifying spatio-temporal patterns of key soil properties could ensure efficient management and input use in agricultural fields with possible increase in yields. A multi-variate geostatistical approach was used to characterize the spatio-temporal variability of the key soil variables to determine management zones in a cocoa field (5.81 ha). One hundred and twenty soil samples were collected. Additionally, a total of nine apparent electrical conductivity (ECa) sampling campaigns at shallow, ECas (0–0.75 m) and deep, ECad (0.75–1.5 m) were conducted with a DUALEM-1S EC meter at the International Cocoa GeneBank, Trinidad between 2009 and 2010. ECad and ECas gave the strongest linear correlation with clay–silt content (r = 0.67 and r = 0.78, respectively) and soil solution electrical conductivity (ECe), ECe (r = 0.76 and r = 0.60, respectively). Multiple linear regressions indicated that clay–silt content and ECe dominated the signal surface response of both ECad and ECas accounting for 66.7 and 63.2 % of ECa variability, respectively. Spearman’s rank correlation coefficients (rs) ranged between 0.89 and 0.97 for ECad and 0.81 and 0.95 for ECas signifying strong temporal stability. Since ECas covers the depth where cocoa feeder roots concentrate, ECas of the wettest month surveyed (August 2009) was used as secondary data in cokriging to improve the spatial and temporal estimation of clay–silt content and ECe. Cokriged data was subjected to fuzzy cluster classification using the Management Zone Analyst software. Two was determined to be the optimum number of management zones. This zone delineation potentially facilitates cost-effective, environmentally friendly and energy efficient management of the field.


Management zones Fuzzy clustering Spatial variability Humid tropic 



The authors would like to thank the staff of the Cocoa Research Center, the University of the West Indies, St. Augustine, Trinidad and Tobago for their technical assistance. Also the assistance of Mr. Kegan Farrick and Ms. Melissa Atwell with data collection is greatly appreciated. The technical advice of Dr. Gaius Eudoxie and the help of Mr. Tahib Baksh and Gareth Edwards in the collection of soil samples are greatly acknowledged.


  1. Abdu, H., Robinson, D. A., & Jones, S. B. (2007). Comparing bulk soil electrical conductivity determination using the DUALEM-1S and EM38-DD electromagnetic induction instruments. Soil Science Society of America Journal, 71, 189–196.CrossRefGoogle Scholar
  2. Aimrun, W., Amin, M. S. M., Ezrin, M. H., & Mastura, M. (2011). Paddy soil properties and yield characteristics based on apparent electrical conductivity zone delineation for a humid tropical rice farm. African Journal of Agricultural Research, 6, 5339–5350.Google Scholar
  3. Atwell, M., Wuddivira, M. N., Gobin, J., & Robinson, D. A. (2013). Edaphic controls on sedge invasion in a tropical wetland assessed with electromagnetic induction. Soil Science Society of America Journal, 77, 1865–1874.CrossRefGoogle Scholar
  4. Bohling, G. (2005). Introduction to geostatistics and variogram analysis. Accessed June 2014.
  5. Bréchet, L., Oatham, M., Wuddivira, M., & Robinson, D. A. (2012). Determining spatial variation of soil properties in teak and native tropical forest soils using electromagnetic-induction. Vadose Zone Journal, 11, 1–11.CrossRefGoogle Scholar
  6. Bullock, D. S., & Bullock, D. G. (2000). Economic optimality of input application rates in precision farming. Precision Agriculture, 2, 71–101.CrossRefGoogle Scholar
  7. Corwin, D. L., Lesch, S. M., Shouse, P. J., Soppe, R., & Ayars, J. E. (2008). Delineating specific management units using geospatial ECa measurements. In B. J. Allred, J. J. Daniels, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 247–254). Boca Raton: Florida.Google Scholar
  8. Doerge, T. (1999). Management zone concepts. SSMG-2. In: Site specific management guidelines. Norcross, GA: Potash and Phosphate Institute.$FILE/SSMG-02.pdf. Accessed June 2014.
  9. Duffera, M., Jeffrey, G. W., & Weisz, R. (2007). Spatial variability of southeastern U.S. Coastal plain soil physical properties: Implications for site-specific management. Geoderma, 137, 327–339.CrossRefGoogle Scholar
  10. Eneje, R. C., Asawalam, D. O., & Ezemobi, C. (2012). Variability in physicochemical properties of some selected Cocoa growing soils in Umuahia north local government area of Abia state. Research Journal of Engineering and Applied Science, 1, 235–239.Google Scholar
  11. Espinosa, J., Mite, F., Cedeño, S., Barriga, S., & Andino, J. (2006). GIS-Based Site-Specific Management of Cocoa. Better Crops, 90, 36–39.Google Scholar
  12. Farahani, H. J., & Buchleiter, G. W. (2004). Temporal stability of soil electrical conductivity in irrigated sandy fields in Colorado. Transactions of the American Society of Agricultural Engineers, 47, 79–90.CrossRefGoogle Scholar
  13. Ferguson, R. B., Lark, R. M., & Slater, G. P. (2003). Approaches to management zone definition for use of nitrification inhibitors. Soil Science Society of America Journal, 67, 937–947.CrossRefGoogle Scholar
  14. Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management Zone Analyst (MZA): software for subfield management zone delineation. Agronomy Journal, 96, 100–108.CrossRefGoogle Scholar
  15. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press.Google Scholar
  16. Granger, O. E. (1983). The hydroclimatology of a developing tropical island: A water resources perspective. Annals of the Association of American Geographers, 73, 183–205.CrossRefGoogle Scholar
  17. Harvord, G. (1955). A note on soil heterogeneity and the growth of cacao. Annual Report Cacao Research. Imperial College of Tropical Agriculture, 1954–1955, 69–71.Google Scholar
  18. Helmke, P. A., & Sparks, D. L. (1996). Lithium, sodium, potassium, rubidium, and cesium. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3 (pp. 551–574). Madison, WI: SSSA Book Ser. 5.Google Scholar
  19. Hudzari, R. M., Aimrun, W., Ssomad, M. A. H. A., & Norazean, M. S. (2013). Application of geographical information system for farm mechanization education and training. Scientific Journal of Pure and Applied Sciences, 2, 196–203.Google Scholar
  20. Johnson, C. K., Doran, J. W., Duke, H. R., Wienhold, B. J., Eskridge, K. M., & Shanahan, J. F. (2001). Field-scale electrical conductivity mapping for delineating soil condition. Soil Science Society of America Journal, 65, 1829–1837.CrossRefGoogle Scholar
  21. Johnson, C. K., Eskridge, K. M., Wienhold, B. J., Doran, J. W., Peterson, G. A., & Buchleiter, G. W. (2003). Using electrical conductivity classification and within-field variability to design field-scale research. Agronomy Journal, 95, 602–613.CrossRefGoogle Scholar
  22. Kitchen, N. R., Sudduth, K. A., Myersb, D. B., Drummonda, S. T., & Hongc, S. Y. (2005). Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Computers and Electronics in Agriculture, 46, 285–308.CrossRefGoogle Scholar
  23. Lesch, S. M., Rhoades, J. D., & Corwin, D. L. (2000). ESAP-95Version 2.10R: User manual and tutorial guide. Research Report 146. USDA-ARS George E. Brown, Jr. Riverside, CA: Salinity Laboratory.Google Scholar
  24. Li, Y., Shi, Z., Wu, C. F., Li, H. Y., & Li, F. (2008). Determination of potential management zones from soil electrical conductivity, yield and crop data. Journal Zhejiang University SCIENCE B, 9, 68–76.CrossRefGoogle Scholar
  25. Mann, K. K., Schumann, A. W., & Obreza, T. A. (2010). Delineating productivity zones in a citrus grove using citrus production, tree growth and temporally stable soil data. Precision Agriculture, 12, 457–472.CrossRefGoogle Scholar
  26. McCutcheon, M. C., Farahani, H. J., Stednick, J. D., Buchleiter, G. W., & Green, T. R. (2006). Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field. Biosystems Engineering, 94, 19–32.CrossRefGoogle Scholar
  27. McNeill, J. D. (1980). Electrical conductivity of soil and rocks. Technical Note TN-5. Mississauga, ON: Geonics Ltd.Google Scholar
  28. Moral, F. J., Terrón, J. M., & Silva, J. R. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106, 335–343.CrossRefGoogle Scholar
  29. Morari, F., Castrignann, A., & Paglirin, C. (2009). Application of multivariate geostatistics in delineating management zones within a gravelly vineyard using geo-electrical sensors. Computers and Electronics in Agriculture, 68, 97–107.CrossRefGoogle Scholar
  30. Mueller, L., Schindler, U., Mirschel, W., Shepherd, T. G., Ball, B. C., Helming, K., et al. (2011). Assessing the productivity function of soils. Sustainable Agriculture, 2, 743–760.Google Scholar
  31. Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12, 788–800.CrossRefGoogle Scholar
  32. Odeh, I. O: A., McBratney, A. B., & Chittleborough, D. J. (1992). Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelationship. Soil Science Society of America Journal, 56, 505–516.CrossRefGoogle Scholar
  33. Ping, J., Green, C., Bronson, K., Zartman, R., & Dobermann, A. (2005). Delineating potential management zones for cotton based on yields and soil properties. Soil Science, 170, 371–385.CrossRefGoogle Scholar
  34. Remy, N. (2004). Geostatistical earth modeling software: User’s manual. Available at Accessed June 2014.
  35. Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Science Society of America Journal, 53, 433–439.CrossRefGoogle Scholar
  36. Robinson, D. A., Binley, A., Crook, N., Day-Lewis, F. D., Ferre, T. P. A., Grauch, V. J. S., et al. (2008). Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrological Processes, 22, 3604–3635.CrossRefGoogle Scholar
  37. Robinson, D. A., Lebron, I., Kocar, B., Phan, K., Sampson, M., Crook, N., et al. (2009). Time-lapse geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological and geochemical processes. Water Resource Resarch, 45, 1–12.Google Scholar
  38. Schumann, A. W., Fares, A., Alva, A. K., & Paramasivam, S. (2003). Response of ‘Hamlin’ orange to fertilizer source, rate and irrigated area. Proceedings of Florida State Horticultural Society, 116, 256–260.Google Scholar
  39. Snoeck, D., Abolo, D., & Jagoret, P. (2010). Temporal changes in VAM fungi in the cocoa agroforestry systems of central Cameroon. Agroforestry Systems, 78, 323–328.CrossRefGoogle Scholar
  40. Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., et al. (1996). Methods of soil analysis. Part 3-chemical methods. Madison, WI: Soil Science Society of America Inc.Google Scholar
  41. Vachaud, G., Passerat, De Silans, Balabanis, P., & Vauclin, M. (1985). Temporal stability of spatially measured soil water probability density function. Soil Science Society of America Journal, 49, 822–828.CrossRefGoogle Scholar
  42. Vitharana, U. W., Van Meirvenne, M., Simpson, D., Cockx, L., & De Baerdemaeker, J. (2008). Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma, 143, 206–215.CrossRefGoogle Scholar
  43. Wood, G. A. R., & Lass, R. A. (1985). Cocoa (4th ed.). Essex: Longman Scientific and Technical.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sunshine A. De Caires
    • 1
  • Mark N. Wuddivira
    • 1
  • Isaac Bekele
    • 1
  1. 1.Department of Food ProductionThe University of the West IndiesSt. AugustineTrinidad and Tobago, WI

Personalised recommendations