Advertisement

Precision Agriculture

, Volume 15, Issue 5, pp 479–498 | Cite as

An approach for assessing the effects of site-specific fertilization on crop growth and yield of durum wheat in organic agriculture

  • M. Diacono
  • A. Castrignanò
  • C. Vitti
  • A. M. Stellacci
  • L. Marino
  • C. Cocozza
  • D. De Benedetto
  • A. Troccoli
  • P. Rubino
  • D. Ventrella
Article

Abstract

Precision agriculture (PA) technologies allow us to assess field variability and support site-specific (SSP) application of inputs. The joint application of PA and organic farming practices might be synergetic. The objective of this 3-year study was to propose a multivariate statistical and geostatistical approach, to evaluate the effects of SSP nitrogen (N) fertilization on durum wheat in transition to organic farming. Soil parameters were measured to assess soil fertility level before the SSP fertilization on wheat, which was carried out by management zones in the third year. Radiometric measurements were performed with a hyperspectral spectroradiometer and N-uptake at anthesis and grain yield were determined. The expected values and 95 % confidence intervals of the soil parameters, N-uptake and yield data were estimated with polygon kriging for each management zone. Reflectance data were reduced through principal component analysis and the retained principal components were submitted to factorial co-kriging analysis to estimate orthogonal scale-dependent factors. Comparisons between N-uptake and yield and between the retained regionalized factors (F1) and yield were performed. The spatial pattern of F1 at shorter scales was mostly reproduced in the N-uptake map, suggesting the predictive capacity of hyperspectral data for crop N-status. Within-cluster variance for yield was reduced, quite probably as a combined effect of meteorological pattern and management. The preliminary results seem to be promising in the perspective of PA. Moreover, an inverse relationship between grain yield and crop N-status was observed.

Keywords

Precision fertilization Hyperspectral data Plant response Grain yield variability Polygon kriging 

Notes

Acknowledgments

The work has been supported by Italian Ministry of Agriculture and Forestry Policies under contract no. 24324/7742/2009 (“Sistemi colturali e interventi agronomici innovativi in agricoltura biologica” BIOINNOVA, Coordinator: Dr. Domenico Ventrella, CRA—SCA, Research Unit for Cropping Systems in Dry Environments, Bari). The authors thank M. Mastrangelo for his skilful technical assistance for chemical analysis. This work was benefited from the fertilizer supplying for free from the ILSA S.p.A. (Dr. Eugenio Babini). The authors wish to thank also the John Deere Company (Dr. Matteo Antonello).

References

  1. Barnes, E. M., Clarke, T. R., & Richards, S. E. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In P. C. Robert, R. H. Rust, & W. E Larson (Eds.), Proceedings of the 5th international conference on precision agriculture. American Society of Agronomy, Madison.Google Scholar
  2. Bowker, A. H. (1948). A test for symmetry in contingency tables. Journal of the American Statistical Association, 43, 572–574.PubMedCrossRefGoogle Scholar
  3. Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97, 39–60.CrossRefGoogle Scholar
  4. Chilès, J. P., & Delfiner, P. (1999). Geostatistics: Modelling spatial uncertainty. New York: Wiley.CrossRefGoogle Scholar
  5. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  6. Diacono, M., Abd El Rahman, H., Cocozza, C., De Benedetto, D., Troccoli, A., Rubino, P., et al. (2011). Delineation of homogeneous field zones based on soil fertility indices in a durum wheat—Chickpea rotation. In J. V. Stafford (Ed.), Precision agriculture 2011 (pp. 164–179). UK: Ampthill.Google Scholar
  7. Diacono, M., Castrignanò, A., Troccoli, A., De Benedetto, D., Basso, B., & Rubino, P. (2012). Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Research, 131, 49–62.CrossRefGoogle Scholar
  8. Digital Globe. (2009). White Paper. The Benefits of the 8 Spectral Bands of WorldView-2. (p. 10). Retrieved from www.digitalglobe.com.
  9. FAO. (1995). Sustainability issues in agricultural and rural development policies, Trainer’s manual, vol 1.Google Scholar
  10. Geovariances. (2012). Isatis® Technical Ref., 12.04 Geovariances and Ecole Des Mines De Paris: Avon Cedex, France.Google Scholar
  11. Horneck, D. A., & Miller, R. O. (1998). Determination of total nitrogen in plant tissue. In Y. P. Kalra (Ed.), Handbook of reference methods for plant analysis (pp. 75–83). Boca Raton: CRC Press.Google Scholar
  12. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.CrossRefGoogle Scholar
  13. Lajaunie, C., & Béhaxétéguy, J. P. (1989). Elaboration d’un programme d’ajustement semi-automatique d’un modèle de corégionalisation—Theorie, technical report N21/89/G. Paris: ENSMP.Google Scholar
  14. Li, F., Miao, Y., Hennig, S. D., Gnyp, M. L., Chen, X., Jia, L., et al. (2010). Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agriculture, 11, 335–357.CrossRefGoogle Scholar
  15. Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen-use efficiency for winter wheat. Soil Science Society of America Journal, 73, 1566–1574.CrossRefGoogle Scholar
  16. Maeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694–1697.CrossRefGoogle Scholar
  17. Matheron, G. (1982). Pour une analyse krigeante des données régionalisées. Rapport N-732. Centre de Géostatistiques, École des Mines de Paris, Fontainebleau.Google Scholar
  18. Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257.PubMedCrossRefGoogle Scholar
  19. Page, A. L., Miller, R. H., & Keeny, D. R. (1982). Methods of soil analysis, Part II (2nd ed.). Madison, WI: American Society of Agronomy.Google Scholar
  20. Prasad, B., Carver, B. F., Stone, M. L., Babar, M. A., Raun, W. R., & Klatt, A. R. (2007). Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under Great Plains conditions. Crop Science, 47, 1426–1440.CrossRefGoogle Scholar
  21. Ray, S. S., Singh, J. P., & Panigraphy, S. (2010). Use of hyperspectral remote sensing data for crop stress detection: Ground-based studies. International Archives of Photogrammetry, Remote Sensing and Spatial Information Science, vol. 38, Part 8. Kyoto, Japan.Google Scholar
  22. SAS Institute Inc., (2012). SAS/STAT software release 9.3. Cary, NC: SAS Institute.Google Scholar
  23. Shepherd, M. A., Davies, D. B., & Johnson, P. A. (1993). Minimizing nitrate losses from arable soil. Soil Use and Management, 9(6), 94–99.CrossRefGoogle Scholar
  24. Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436, 2nd edn. Washington, DC: U.S. Gov. Print. Office.Google Scholar
  25. Stellacci, A. M., Castrignanò, A., Diacono, M., Troccoli, A., Ciccarese, A., Armenise, E., et al. (2012). Combined approach based on principal component analysis and canonical discriminant analysis for investigating hyperspectral plant response. Italian Journal of Agronomy, 7, 247–253.CrossRefGoogle Scholar
  26. Stroppiana, D., Boschetti, M., Brivio, P. A., & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 111, 119–129.CrossRefGoogle Scholar
  27. Thenkabail, P. S., Enclona, E. A., Ashton, M. S., & Van Der Meer, B. (2004). Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91, 354–376.CrossRefGoogle Scholar
  28. Tubaña, B. S., Arnall, D. B., Holtz, S. L., Solie, J. B., Girma, K., & Raun, W. R. (2008). Effect of treating field spatial variability in winter wheat at different resolutions. Journal of Plant Nutrition, 31, 1975–1998.CrossRefGoogle Scholar
  29. Wackernagel, H. (2003). Multivariate geostatistics: An introduction with applications (3rd ed.). Berlin: Springer.CrossRefGoogle Scholar
  30. Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263.CrossRefGoogle Scholar
  31. Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists. Statistics in practice. Chichester: Wiley.Google Scholar
  32. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Diacono
    • 1
    • 2
  • A. Castrignanò
    • 2
  • C. Vitti
    • 2
  • A. M. Stellacci
    • 2
  • L. Marino
    • 3
  • C. Cocozza
    • 3
  • D. De Benedetto
    • 2
  • A. Troccoli
    • 4
  • P. Rubino
    • 1
  • D. Ventrella
    • 2
  1. 1.Dipartimento di Scienze Agro-ambientali e TerritorialiUniversity of BariBariItaly
  2. 2.Consiglio per la ricerca e la sperimentazione in agricoltura - Unità di ricerca per i sistemi colturali degli ambienti caldo-aridi (Bari)BariItaly
  3. 3.Dipartimento di Scienze del Suolo, della Pianta e degli AlimentiUniversity of BariBariItaly
  4. 4.Consiglio per la ricerca e la sperimentazione in agricoltura - Centro di ricerca per la cerealicolturaFoggiaItaly

Personalised recommendations