Precision Agriculture

, Volume 13, Issue 4, pp 501–516 | Cite as

Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.)

  • M. Mirik
  • R. J. Ansley
  • G. J. MichelsJr.
  • N. C. Elliott


The effects of insect infestation in agricultural crops are of major economic interest because of increased cost of pest control and reduced final yield. The Russian wheat aphid (RWA: Diuraphis noxia) feeding damage (RWAFD), referred to as “hot spots”, can be traced, indentified, and isolated from uninfested areas for site specific RWA control using remote sensing techniques. Our objectives were to (1) examine the use of spectral reflectance characteristics and changes in selected spectral vegetation indices to discern infested and uninfested wheat (Triticum aestivum L.) by RWA and (2) quantify the relationship between spectral vegetation indices and RWAFD. The RWA infestations were investigated in irrigated, dryland, and greenhouse growing wheat and spectral reflectance was measured using a field radiometer with nine discrete spectral channels. Paired t test comparisons of percent reflectance made for RWA-infested and uninfested wheat yielded significant differences in the visible and near infrared parts of the spectrum. Values of selected indices were significantly reduced due to RWAFD compared to uninfested wheat. Simple linear regression analyses showed that there were robust relationships between RWAFD and spectral vegetation indices with coefficients of determination (r 2) ranging from 0.62 to 0.90 for irrigated wheat, from 0.50 to 0.87 for dryland wheat, and from 0.84 to 0.87 for the greenhouse experiment. These results indicate that remotely sensed data have high potential to identify and separate “hot spots” from uninfested areas for site specific RWA control.


Remote sensing Stress detection Site-specific insect management Insect infestation Hot spots 



Our special thanks to Karl Steddom, Robert Bowling, and Roxanne Bowling for their help and beneficial discussion. We are thankful to Johnny Bible, Robert Villarreal, David Jones, Joy Newton, Sabina Mirik, Daniel Jiminez, and Timothy Johnson for technical assistance. This study was funded by the USDA-ARS Areawide Pest Management Program. Project Number: 500-44-012-00. We also express our thanks to the two anonymous reviewers and editors who made critical suggestions and comments to improve the manuscript.


  1. Adulga, H., & Tadesse, G. M. (1988). Chemical control of the wheat aphid (Diuraphis noxia Mordw.) on barley at Chacha, Ethiopia. Committee of Ethiopian Entomologist News Letter, 8, 13–16.Google Scholar
  2. Apan, A., Held, A., Phinn, S., & Markley, J. (2004). Detecting sugarcane ‘orange rust’ disease using EO-1 hyperion hyperspectral imagery. International Journal of Remote Sensing, 25, 489–498.CrossRefGoogle Scholar
  3. Archer, T. L., & Bynum, E. D., Jr. (1992). Economic injury level for the Russian wheat aphid (Homoptera: Aphididae) on dryland winter wheat. Journal of Economic Entomology, 85, 987–992.Google Scholar
  4. Archer, T. L., Peairs, F. B., Pike, K. S., Johnson, G. D., & Kroening, M. (1998). Economic injury levels for the Russian wheat aphid (Homoptera: Aphididae) on winter wheat in several climate zones. Journal of Economic Entomology, 91, 741–747.Google Scholar
  5. Backoulou, G. F., Elliott, N. C., Giles, K., Phoofolo, M., & Catana, V. (2011a). Development of a method using multispectral imagery and spatial pattern metrics to quantify stress to wheat fields caused by Diuraphis noxia. Computers and Electronics in Agriculture, 75, 64–70.CrossRefGoogle Scholar
  6. Backoulou, G. F., Elliott, N. C., Giles, K. L., Phoofolo, M., Catana, V., Mirik, M., et al. (2011b). Spatially discriminating Russian wheat aphid induced plant stress from other wheat stressing factors. Computers and Electronics in Agriculture, 78, 123–129.CrossRefGoogle Scholar
  7. Bauriegel, E., Giebel, A., Geyer, M., Schmidt, U., & Herppich, W. B. (2011). Early detection of Fusarium infection in wheat using hyper-spectral imaging. Computers and Electronics in Agriculture, 75, 304–312.CrossRefGoogle Scholar
  8. Burd, J. D., & Burton, R. L. (1992). Characterization of plant damage caused by Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology, 85, 2017–2022.Google Scholar
  9. Burd, J. D., Burton, R. L., & Webster, J. A. (1993). Evaluation of Russian wheat aphid (Homoptera: Aphididae) damage on resistant and susceptible hosts with comparisons of damage ratings to quantitative plant measurements. Journal of Economic Entomology, 86, 974–980.Google Scholar
  10. Bürling, K., Hunsche, M., & Noga, G. (2011). Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. Journal of Plant Physiology, 168, 1641–1648.PubMedCrossRefGoogle Scholar
  11. Butts, R. A., Thomas, J. B., Lukow, O., & Hill, B. D. (1997). Effect of fall infestations of Russian wheat aphid (Homoptera: Aphididae) on winter wheat yield and quality on the Canadian prairies. Journal of Economic Entomology, 90, 1005–1009.Google Scholar
  12. Cammarano, D., Fitzgerald, G., Basso, B., O’Leary, G., Chen, D., Grace, P., et al. (2011). Use of the canopy chlorophyll content index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agronomy Journal, 103, 1597–1603.CrossRefGoogle Scholar
  13. Cooper, W. R., Dillwith, J. W., & Puterka, G. J. (2010). Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environmental Entomology, 39, 223–231.PubMedCrossRefGoogle Scholar
  14. Dammer, K. H., Möller, B., Rodemann, B., & Heppner, D. (2011). Detection of head blight (Fusarium ssp.) in winter wheat by color and multispectral image analyses. Crop Protection, 30, 420–428.CrossRefGoogle Scholar
  15. Deol, G. S., Reese, J. C., Gill, B. S., Wilde, G. E., & Campbell, L. R. (2001). Comparative chlorophyll losses in susceptible wheat leaves fed upon by Russian wheat aphids or greenbugs (Homoptera: Aphididae). Journal of the Kansas Entomological Society, 74, 192–198.Google Scholar
  16. Du Toit, F., & Walters, M. C. (1984). Damage assessment and economic threshold values for the chemical control of the Russian wheat aphid, Diuraphis noxia, (Mordvilko) on winter wheat. In M. C. Walters (Ed.), Progress in Russian wheat aphid (Diuraphis noxia Mordw.) research in the Republic of South Africa, Technical Communication 191 (pp. 58–62). Johannesburg, South Africa: Department of Agriculture, Republic of South Africa.Google Scholar
  17. Eitel, J. U. H., Vierling, L. A., Litvak, M. E., Long, D. S., Schulthess, U., Ager, A. A., et al. (2011). Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sensing of Environment, 115, 3640–3646.CrossRefGoogle Scholar
  18. Elliott, N., Mirik, M., Yang, Z., Dvorak, T., Rao, M., Michels, J., et al. (2007). Airborne multi-spectral remote sensing of Russian wheat aphid injury to wheat. Southwestern Entomologist, 32, 213–219.CrossRefGoogle Scholar
  19. Elliott, N., Mirik, M., Yang, Z., Jones, D., Phoofolo, M., Catana, V., et al. (2009). Airborne remote sensing to detect greenbug stress to wheat. Southwestern Entomologist, 34, 205–211.CrossRefGoogle Scholar
  20. Elmetwalli, A. M. H., Tyler, A. N., Hunter, P. D., & Salt, A. C. (2012). Detecting and distinguishing moisture- and salinity-induced stress in wheat and maize through in situ spectroradiometry measurements. Remote Sensing Letters, 3, 363–372.CrossRefGoogle Scholar
  21. Elsayed, S., Mistele, B., & Schmidhalter, U. (2011). Can changes in leaf water potential be assessed spectrally? Functional Plant Biology, 38, 523–533.Google Scholar
  22. Franke, J., & Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8, 161–172.CrossRefGoogle Scholar
  23. Genc, H., Genc, L., Turhan, H., Smith, S. E., & Nation, J. L. (2008). Vegetation indices as indicators of damage by the sunn pest (Hemiptera: Scutelleridae) to field grown wheat. African Journal of Biotechnology, 7, 173–180.Google Scholar
  24. Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.CrossRefGoogle Scholar
  25. Gitelson, A. A., & Merzlyak, M. N. (1996). Signature analysis of leaf reflectance spectra: Algorithm development for remote sensing of chlorophyll. Journal of Plant Physiology, 148, 494–500.CrossRefGoogle Scholar
  26. Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691–2697.CrossRefGoogle Scholar
  27. Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74, 38–45.PubMedCrossRefGoogle Scholar
  28. Gitelson, A. A., Zur, Y., Chivkunova, O. B., & Merzlyak, M. N. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 272–281.PubMedCrossRefGoogle Scholar
  29. Govender, M., Dye, P. J., Weiersbye, I. M., Witkowski, E. T. F., & Ahmed, F. (2009). Review of commonly used remote sensing and ground-based technologies to measure plant water stress. Water SA, 35, 741–752.CrossRefGoogle Scholar
  30. Gray, M. E., Hein, G. L., Walgenbach, D. D., & Elliott, N. C. (1990). Effects of Russian wheat aphid (Homoptera: Aphididae) on winter and spring wheat infested during different plant growth stages under greenhouse conditions. Journal of Economic Entomology, 83, 2434–2442.Google Scholar
  31. Heng-Moss, T. M., Ni, X., Macedo, T., Markwell, J. P., Baxendale, F. P., Quisenberry, S. S., et al. (2003). Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. Journal of Economic Entomology, 96, 475–481.PubMedCrossRefGoogle Scholar
  32. Hillnhütter, C., Mahlein, A. K., Sikora, R. A., & Oerke, E. C. (2011). Remote sensing to detect plant stress induced by Heterodera schachtii and Rhizoctonia solani in sugar beet fields. Field Crops Research, 122, 70–77.CrossRefGoogle Scholar
  33. Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., & Wang, J. (2007). Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187–197.CrossRefGoogle Scholar
  34. Huang, J., Liao, H., Zhu, Y., Sun, J., Sun, Q., & Liu, X. (2012). Hyperspectral detection of rice damaged by rice leaf folder (Cnaphalocrocis medinalis). Computers and Electronics in Agriculture, 82, 100–107.CrossRefGoogle Scholar
  35. Hunt, E. R., Li, L., Yilmaz, M. T., & Jackson, T. J. (2011). Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa. Remote Sensing of Environment, 115, 2376–2383.CrossRefGoogle Scholar
  36. Jackson, R. D. (1986). Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology, 24, 265–287.CrossRefGoogle Scholar
  37. Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.CrossRefGoogle Scholar
  38. Kazemi, M. H., Talebi-Chaichi, P., Shakiba, M. R., & Jafarloo, M. M. (2001). Biological responses of Russian wheat aphid, Diuraphis noxia (Mordvilko) (Homoptera: Aphididae) to different wheat varieties. Journal of Agricultural Science and Technology, 3, 249–255.Google Scholar
  39. Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2011). Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture, 77, 155–160.CrossRefGoogle Scholar
  40. Lage, J., Skovmand, B., & Andersen, S. B. (2004). Resistance categories of synthetic hexaploid wheats resistant to the Russian wheat aphid (Diuraphis noxia). Euphytica, 136, 291–296.CrossRefGoogle Scholar
  41. Lee, Y., Yang, C., Chang, K., & Shen, Y. (2011). Effects of nitrogen status on leaf anatomy, chlorophyll content and canopy reflectance of paddy rice. Botanical Studies, 52, 295–303.Google Scholar
  42. Liu, M., Liu, X., Wu, L., Duan, L., & Zhong, B. (2011). Wavelet-based detection of crop zinc stress assessment using hyperspectral reflectance. Computers & Geosciences, 37, 1254–1263.CrossRefGoogle Scholar
  43. Macedo, T. B., Higley, L. G., Ni, X., & Quisenberry, S. S. (2003). Light activation of Russian wheat aphid-elicited physiological responses in susceptible wheat. Journal of Economic Entomology, 96, 194–201.PubMedCrossRefGoogle Scholar
  44. Matile, P. (2000). Biochemistry of Indian summer: Physiology of autumnal leaf coloration. Experimental Gerontology, 35, 145–158.PubMedCrossRefGoogle Scholar
  45. Mewes, T., Franke, J., & Menz, G. (2011). Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture, 12, 795–812.CrossRefGoogle Scholar
  46. Mirik, M., Ansley, J., Michels, J., & Elliott, N. (2009). Grain and vegetative biomass reduction by the Russian wheat aphid in winter wheat. Southwestern Entomologist, 34, 131–157.CrossRefGoogle Scholar
  47. Mirik, M., Jones, D. C., Price, J. A., Workneh, F., Ansley, R. J., & Rush, C. M. (2011). Satellite remote sensing of wheat infected by wheat streak mosaic virus. Plant Disease, 95, 4–12.CrossRefGoogle Scholar
  48. Mirik, M., Michels, G. J., Jr, Kassymzhanova-Mirik, S., & Elliott, N. C. (2007a). Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57, 123–134.CrossRefGoogle Scholar
  49. Mirik, M., Michels, G. J., Jr, Kassymzhanova-Mirik, S., Elliott, N. C., & Bowling, R. (2006a). Hyperspectral spectrometry as a means to differentiate uninfested and infested winter wheat by greenbug (Hemiptera: Aphididae). Journal of Economic Entomology, 99, 1682–1690.PubMedCrossRefGoogle Scholar
  50. Mirik, M., Norland, J. E., Biondini, M. E., Crabtree, R. L., & Michels, G. J. (2007b). Relationships between remotely sensed data and biomass components in a big sagebrush (Artemisia tridentata) dominated area in Yellowstone National Park. Turkish Journal of Agriculture and Forestry, 31, 135–145.Google Scholar
  51. Mirik, M., Norland, J. E., Crabtree, R. L., & Biondini, M. E. (2005). Hyperspectral one-meter-resolution remote sensing in Yellowstone National Park, Wyoming: II. Biomass. Rangeland Ecology & Management, 58, 459–465.CrossRefGoogle Scholar
  52. Mirik, M., Steddom, K., & Michels, G. J., Jr. (2006b). Estimating biophysical characteristics of musk thistle (Carduus nutans) with three remote sensing instruments. Rangeland Ecology and Management, 59, 44–54.CrossRefGoogle Scholar
  53. Moshou, D., Bravo, C., Oberti, R., West, J. S., Ramon, H., Vougioukas, S., et al. (2011). Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering, 108, 311–321.CrossRefGoogle Scholar
  54. Nutter, F. W., Jr, & Littrell, R. H. (1996). Relationships between defoliation, canopy reflectance and pod yield in the peanut-late leafspot pathosystem. Crop Protection, 15, 135–142.CrossRefGoogle Scholar
  55. Ortiz, B. V., Thomson, S. J., Huang, Y., Reddy, K. N., & Ding, W. (2011). Determination of differences in crop injury from aerial application of glyphosate using vegetation indices. Computers and Electronics in Agriculture, 77, 204–213.CrossRefGoogle Scholar
  56. Pacumbaba, R. O., Jr, & Beyl, C. A. (2011). Changes in hyperspectral reflectance signatures of lettuce leaves in response to macronutrient deficiencies. Advances in Space Research, 48, 32–42.CrossRefGoogle Scholar
  57. Pethybridge, S. J., Hay, F., Esker, P., Groom, T., Wilson, C., & Nutter, F. W., Jr. (2008). Visual and radiometric assessments for yield losses caused by ray blight in pyrethrum. Crop Science, 48, 343–352.CrossRefGoogle Scholar
  58. Pethybridge, S. J., Hay, F., Esker, P., Wilson, C., & Nutter, F. W., Jr. (2007). Use of a multispectral radiometer for noninvasive assessments of foliar disease caused by ray blight in pyrethrum. Plant Disease, 91, 1397–1406.CrossRefGoogle Scholar
  59. Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79, 189–198.CrossRefGoogle Scholar
  60. Randolph, T. L., Peairs, F. B., Kroening, M. K., Armstrong, J. S., Hammon, R. W., Walker, C. B., et al. (2003). Plant damage and yield response to the Russian wheat aphid (Homoptera: Aphididae) on susceptible and resistant winter wheats in Colorado. Journal of Economic Entomology, 96, 352–360.PubMedCrossRefGoogle Scholar
  61. Randolph, T. L., Peairs, F., Weiland, A., Rudolph, J. B., & Puterka, G. J. (2009). Plant responses to seven Russian wheat aphid (hemiptera: Aphididae) biotypes found in the United States. Journal of Economic Entomology, 102, 1954–1959.PubMedCrossRefGoogle Scholar
  62. Riedell, W. E., & Blackmer, T. M. (1999). Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Science, 39, 1835–1840.CrossRefGoogle Scholar
  63. Rodriguez, D., Fitzgerald, G. J., Belford, R., & Christensen, L. K. (2006). Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research, 57, 781–789.CrossRefGoogle Scholar
  64. Rosyara, U., Subedi, S., Duveiller, E., & Sharma, R. C. (2010). Photochemical Efficiency and SPAD value as indirect selection criteria for combined selection of spot blotch and terminal heat stress in wheat. Journal of Phytopathology, 158, 813–821.Google Scholar
  65. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, 1, 309–317.Google Scholar
  66. Serrano, L., González-Flor, C., & Gorchs, G. (2011). Assessment of grape yield and composition using the reflectance based water index in mediterranean rainfed vineyards. Remote Sensing of Environment, 118, 249–258.CrossRefGoogle Scholar
  67. Serrano, L., Peñuelas, J., & Ustin, S. L. (2002). Remote sensing of nitrogen and lignin in mediterranean vegetation from AVIRIS data: Decomposing biochemical from structural signals. Remote Sensing of Environment, 81, 355–364.CrossRefGoogle Scholar
  68. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigments content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.CrossRefGoogle Scholar
  69. Steddom, K., Bredehoeft, M. W., Khan, M., & Rush, C. M. (2005). Comparison of visual and multispectral radiometric disease evaluations of cercospora leaf spot of sugar beet. Plant Disease, 89, 153–158.CrossRefGoogle Scholar
  70. Steddom, K., Heidel, G., Jones, D., & Rush, C. M. (2003). Remote detection of rhizomania in sugar beets. Phytopathology, 93, 720–726.PubMedCrossRefGoogle Scholar
  71. Subash, N., Ram Mohan, H. S., & Banukumar, K. (2011). Comparing water-vegetative indices for rice (Oryza sativa L.)-wheat (Triticum aestivum L.) drought assessment. Computers and Electronics in Agriculture, 77, 175–187.CrossRefGoogle Scholar
  72. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.CrossRefGoogle Scholar
  73. Unger, L. M., & Quisenberry, S. S. (1997). Categorization of six wheat plant introduction lines for resistance to the Russian wheat aphid (Homoptera: Aphididae). Journal of Economic Entomology, 90, 1408–1413.Google Scholar
  74. Vandenberg, J. D., Sandvol, L. E., Jaronski, S. T., Jackson, M. A., Souza, E. J., & Halbert, S. E. (2001). Efficacy of fungi for control of Russian wheat aphid (Homoptera: Aphididae) in irrigated wheat. Southwestern Entomologist, 26, 73–85.Google Scholar
  75. Weiland, A. A., Peairs, F. B., Randolph, T. L., & Kerzicnik, L. M. (2009). Seasonal presence of the Russian wheat aphid (Hemiptera: Aphididae) on alternate hosts in Colorado. Southwestern Entomologist, 34, 121–129.CrossRefGoogle Scholar
  76. West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 41, 593–614.PubMedCrossRefGoogle Scholar
  77. Xue, L., Cao, W., Luo, W., Dai, T., & Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96, 135–142.CrossRefGoogle Scholar
  78. Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2005). Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation. Computers and Electronics in Agriculture, 47, 121–135.CrossRefGoogle Scholar
  79. Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2009). Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Computers and Electronics in Agriculture, 67, 64–70.CrossRefGoogle Scholar
  80. Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.CrossRefGoogle Scholar
  81. Zhang, J., Huang, W., Li, J., Yang, G., Luo, J., Gu, X., et al. (2011). Development, evaluation and application of a spectral knowledge base to detect yellow rust in winter wheat. Precision Agriculture, 12, 716–731.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Mirik
    • 1
  • R. J. Ansley
    • 1
  • G. J. MichelsJr.
    • 2
  • N. C. Elliott
    • 3
  1. 1.Texas AgriLife ResearchVernonUSA
  2. 2.Texas AgriLife ResearchAmarilloUSA
  3. 3.USDA-ARSStillwaterUSA

Personalised recommendations