Precision Agriculture

, Volume 12, Issue 3, pp 345–360 | Cite as

Plant leaf roughness analysis by texture classification with generalized Fourier descriptors in a dimensionality reduction context

  • L. Journaux
  • J.-C. Simon
  • M. F. Destain
  • F. Cointault
  • J. Miteran
  • A. Piron


In the context of plant leaf roughness analysis for precision spraying, this study explores the capability and the performance of some combinations of pattern recognition and computer vision techniques to extract the roughness feature. The techniques merge feature extraction, linear and nonlinear dimensionality reduction techniques, and several kinds of methods of classification. The performance of the methods is evaluated and compared in terms of the error of classification. The results for the characterization of leaf roughness by generalized Fourier descriptors for feature extraction, kernel-based methods such as support vector machines for classification and kernel discriminant analysis for dimensionality reduction were encouraging. These results pave the way to a better understanding of the adhesion mechanisms of droplets on leaves that will help to reduce and improve the application of phytosanitary products and lead to possible modifications of sprayer configurations.


Texture classification Precision spraying Motion descriptors Dimensionality reduction Leaf roughness Kernel discriminant analysis 


  1. Abe, S. (2005). Support vector machines for pattern classification. London: Springer-Verlag.Google Scholar
  2. Backes, A. R., & Bruno, O. M. (2009). Plant leaf identification using multi-scale fractal dimensions. In P. Foggin, C. Sansome, & M. Vento (Eds.), Image analysis and processing—ICIAP (pp. 143–150). Berlin/Heidelberg: Springer.Google Scholar
  3. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.CrossRefGoogle Scholar
  4. Belouchrani, A., Abed-Meraim, K., Cardoso, J. F., & Moulines, E. (1997). A blind source separation technique using second order statistics. IEEE Transactions on Signal Processing, 45, 434–444.CrossRefGoogle Scholar
  5. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.Google Scholar
  6. Brodatz, P. (1966). Textures: A photographic album for artists and designers. New York: Dover Publications.Google Scholar
  7. Camastra, F., & Vinciarelli, A. (2002). Estimating the intrinsic dimension of data with a fractal-based method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1404–1407.CrossRefGoogle Scholar
  8. Choi, H., & Choi, S. (2007). Robust kernel Isomap. Pattern Recognition, 40, 853–862.CrossRefGoogle Scholar
  9. Cointault, F., Guérin, D., Guillemin, J. P., & Chopinet, B. (2008). In-field wheat ears counting using color-texture image analysis. New Zealand Journal of Crop and Horticultural Science, 36, 117–130.CrossRefGoogle Scholar
  10. Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287–314.CrossRefGoogle Scholar
  11. Demartines, P., & Hérault, J. (1997). Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on neural networks, 8, 148–154.PubMedCrossRefGoogle Scholar
  12. Deza, E., & Deza, M. (2006). Dictionary of distances. Amsterdam: Elsevier.Google Scholar
  13. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley Interscience Publication.Google Scholar
  14. Fodor, I. K. (2002). A survey of dimension reduction techniques. Lawrence Livermore National Laboratory technical report.Google Scholar
  15. Forster, W. A., Zabkiewicz, J. A., & Kimberley, M. O. (2005). A universal spray droplet adhesion model. Transactions of the ASAE, 48, 1321–1330.Google Scholar
  16. Friedman, J. H., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on computers, C23, 881–890.CrossRefGoogle Scholar
  17. Gauthier, J.-P., Bornard, G., & Silbermann, M. (1991). Harmonic analysis on motion groups and their homogeneous spaces. IEEE Transactions on Systems, Man and Cybernetics, 21, 159–172.CrossRefGoogle Scholar
  18. Ham, J., Lee, D. D., Mika, S., & Schölkopf, B. (2004). A kernel view of the dimensionality reduction of manifolds. In C. E. Brodley (Ed.), Twenty first international conference on machine learning (pp. 369–376). Banff, Canada: ACM International Conference Proceeding Series.Google Scholar
  19. Hijazi, B., Cointault, F., Yang, F., & Paindavoine, M. (2008). High-speed motion estimation of fertilizer granules with Gabor filters. In K. Harald & G. Martha Patricia Butron (Eds.), Proceedings of the 28th SPIE international congress on high-speed imaging and photonics (Vol. 7126), Canberra, Australia.Google Scholar
  20. Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14, 55–63.CrossRefGoogle Scholar
  21. HyvÄarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10, 626–634.CrossRefGoogle Scholar
  22. Jain, A. K., & Tuceryan, M. (1993). Texture analysis. In C. H. Chen & P. S. P. Wang (Eds.), Handbook of pattern recognition and computer vision (pp. 235–276). Singapore: World Scientific.Google Scholar
  23. Journaux, L., Foucherot, I., & Gouton, P. (2006). Reduction of the number of spectral bands in Landsat images: A comparison of linear and nonlinear methods. Optical Engineering, 45, 067002.CrossRefGoogle Scholar
  24. Kittler, J. (1978). Feature set search algorithms. In C. H. Chen (Ed.), Pattern Recognition and Signal Processing (pp. 41–60). Alphen aan den Rijn, Netherlands: Sijthoff and Noordhoff.Google Scholar
  25. Kruskal, J. B. (1964). Non-metric multidimensional scaling: a numerical method. Psychometrika, 29, 115–129.CrossRefGoogle Scholar
  26. Lee, J. A., Lendasse, A., & Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57, 49–76.CrossRefGoogle Scholar
  27. Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. London: Springer.CrossRefGoogle Scholar
  28. Liang, Z., Zhang, D., & Shi, P. (2006). Robust kernel discriminant analysis and its application to feature extraction and recognition. Neurocomputing, 69, 928–933.CrossRefGoogle Scholar
  29. Miteran, J., Gorria, P., & Robert, M. (1994). Geometric classification by stress polytopes. Performances and integrations. Traitement du signal, 11, 393–407.Google Scholar
  30. Niskanen, M., & Silven, O. (2003). Comparison of dimensionality reduction methods for wood surface inspection. In K. W. Tobin & F. Meriaudeau (Eds.), Proceeding of the 6th international conference on quality control by artificial vision (pp. 178–188). Tennessee, USA, SPIE: Gatlinburg.Google Scholar
  31. Robert, P. C. (1999). Precision agriculture: research needs and status in the USA. In J. V. Stafford (Ed.), Precision agriculture ‘99. London, UK: SCI.Google Scholar
  32. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.PubMedCrossRefGoogle Scholar
  33. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge, MA: MIT Press.Google Scholar
  34. Sammon, J. W. (1969). A nonlinear mapping for data analysis. IEEE Transactions on Computers, C18, 401–409.CrossRefGoogle Scholar
  35. Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5, 197–227.Google Scholar
  36. Schölkopf, B., Burges, J. C. C., & Smola, A. J. (1999). Advances in kernel methods—support vector learning. Cambridge, MA: MIT Press.Google Scholar
  37. Schölkopf, B., Smola, A. J., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299–1319.CrossRefGoogle Scholar
  38. Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press.Google Scholar
  39. Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. Part 1. Psychometrika, 27, 125–140.CrossRefGoogle Scholar
  40. Short, N. M. Remote sensing tutorial. Retrieved April 14, 2010, from
  41. Smach, F., Lemaître, C., Gauthier, J.-P., Miteran, J., & Atri, M. (2007). Generalized Fourier descriptors with applications to objects recognition in SVM context. Journal of Mathematical Imaging and Vision, 30, 43–71.CrossRefGoogle Scholar
  42. Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.PubMedCrossRefGoogle Scholar
  43. Tzionas, P., Papadakis, S., & Manolakis, D. (2005). Plant leaves classification based on morphological features and a fuzzy surface selection technique. In D. Manolakis & A. Gogoussis (Eds.), 5th International Conference on Technology and Automation (pp. 365–370). Thessaloniki, Greece: IEEE Computer society.Google Scholar
  44. Vapnik, V. (1998). Statistical learning theory. New York: Wiley Interscience Publication.Google Scholar
  45. Villette, S., Cointault, F., Piron, E., Chopinet, B., & Paindavoine, M. (2008). Simple imaging system to measure velocity and improve the quality of fertilizer spreading in agriculture. Journal of Electronic imaging, 17, 1109–1119.CrossRefGoogle Scholar
  46. Witten, I. H., & Eibe, F. (2005). Data mining: Practical Machine learning tools and techniques (2nd ed.). Morgan Kaufmann series in data management systems. Morgan Kaufmann. San Francisco: Elsevier.Google Scholar
  47. Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y. X., Chang, Y.-F., & Xiang, Q.-L. (2007). A leaf recognition algorithm for plant classification using probabilistic neural network. IEEE International Symposium on Signal Processing and Information Technology (pp. 11–16). Cairo, Egypt. Giza: IEEE Computer society.Google Scholar
  48. Yun, Z., Yong, H., Kexin, X., Qingming, L., Da, X., Alexander, V. P., et al. (2006). Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS). Progress in biomedical optics and imaging, 7(2), 37.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • L. Journaux
    • 1
  • J.-C. Simon
    • 1
  • M. F. Destain
    • 2
  • F. Cointault
    • 3
  • J. Miteran
    • 4
  • A. Piron
    • 2
  1. 1.AgroSupDijon, Engineering SciencesDijon CedexFrance
  2. 2.FUSAGX, Unité de Mécanique et ConstructionGemblouxBelgium
  3. 3.AgroSupDijon, Agroengineering SciencesDijon CedexFrance
  4. 4.Université de BourgogneDijon CedexFrance

Personalised recommendations